cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
cmr : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
cho x,y,z dương thay đổi, thoả mãn xyz=1 . tìm max của S = \(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+zx}\)
let x,y,z>0 such that xyz=1. show that \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{x^4+x+y}}\ge2\sqrt{xy+yz+zx}\)
Cho C=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\) và xyz=4. Tính \(\sqrt{C}\)
a. giải phương trình sau : \(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
b. cho x,y,z là 3 số thỏa mãn : xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
tính giá trị của biểu thức : \(P=\left(x^{2015}-1\right)\left(y^{2016}-1\right)\left(z^{2017}-1\right)\)
Chứng minh với mọi x,y,z dương :
\(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}+\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}+\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le2\)
tìm số x,y,x TM\(\frac{\sqrt{x-2002}-1}{x-2002}+\frac{\sqrt{y-2003}-1}{y-2003}+\frac{\sqrt{z-2004}-1}{z-2004}=\frac{3}{4}\)
Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
Giúp mình với: Tìm x ; y ;z
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}}{z-2011}=\frac{3}{4}\)