Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Hoàng Quân
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
15 tháng 6 2023 lúc 15:55

`@` `\text {Ans}`

`\downarrow`

`P(x)=x^4 + 3x^2 + 13 = 0`

Vì \(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)

`=>`\(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\3x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)

`=>`\(x^4+3x^2+13\ge13>0\text{ }\forall\text{ x}\)

Mà 13 \ne 0`

`=>` Đa thức `P(x)` vô nghiệm.

Kiều Vũ Linh
15 tháng 6 2023 lúc 16:01

P(x) = x⁴ + 2 . x² . 3/2 + (3/2)² + 13 - (3/2)²

= (x² + 3/2)² + 43/4

Do (x² + 3/2)² ≥ 0 với mọi x

⇒ (x² + 3/2)² + 43/4 > 0 với mọi x

Vậy P(x) vô nghiệm

Minh Nguyễn Quang
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
24 tháng 6 2020 lúc 8:24

\(f\left(x\right)=2x^4+3x^2+4=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Ta có \(2t^2+3t+4=0\)

Do \(2t^2\ge0;3t\ge0;4>0\)

Nên đa thức ko có nghiệm 

Khách vãng lai đã xóa
Lê Vũ Ngọc Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 20:16

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

Nguyễn Ngọc Ánh
Xem chi tiết
Thanh Tùng DZ
22 tháng 4 2018 lúc 11:55

Ta có :

x4 + 3x2 + 3

= ( x2 )2 + 2 . \(\frac{3}{2}\). x2 + \(\left(\frac{3}{2}\right)^2\)\(\frac{3}{4}\)

= ( x2 + \(\frac{3}{2}\))2 + \(\frac{3}{4}\)> 0

Vậy ...

Nguyễn Ngọc Ánh
22 tháng 4 2018 lúc 13:02

thank bạn nhìu

trinh linh
Xem chi tiết
nghiêm quynh anh
Xem chi tiết
Ngọc Mai Trần
Xem chi tiết
Đinh quang hiệp
20 tháng 5 2018 lúc 17:30

\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)

\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm

Lê Minh Nguyệt
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 2 2021 lúc 11:57

\(x^2+3x+4=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{7}{4}\left(VL\right)\)

Vậy ĐPCM

Minh Hồng
5 tháng 2 2021 lúc 11:57

\(x^2+3x+4=0\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có \(\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)

Vậy phương trình vô nghiệm.

Trịnh Thành Công
Xem chi tiết
Hoàng Phúc
16 tháng 4 2016 lúc 15:45

Vì x4 \(\ge\) 0 với mọi x \(\in\) R

   3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R

=>P(x) vô nghiệm

Thánh Ca
27 tháng 8 2017 lúc 16:42

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha