\(\left(\dfrac{\text{√}x}{\text{√}x+2}+\dfrac{8\text{√}x+8}{x+2\text{√}x}-\dfrac{\text{√}x+2}{\text{√}x}\right):\left(\dfrac{x+\sqrt{x}+3}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)
a) rút gọn P
b)CMR: P≤1
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
1, P=(\(\dfrac{\text{x-1}}{\text{x+3}\sqrt{\text{x-4}}}+\dfrac{\sqrt{\text{x}}+1}{1-\sqrt{\text{x}}}\)) : \(\dfrac{\text{x}+2\sqrt{\text{x}}+1}{x-1}\)+1
a, Rút gọn P
b, Tìm x để P<0
Câu 1:Cho biểu thức P=\(\text{}\text{}\text{}\text{}\left(\dfrac{x}{4-x^2}+\dfrac{2}{x-2}-\dfrac{1}{x+2}\right):\left(1-\dfrac{x+1}{x+2}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P khi cho \(\left|x\right|\)=1
c)Tìm x để P >0
d)Tìm x để P = \(\dfrac{1}{x+1}\)
Câu 2:Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền của tam giác thành hai đoạn có độ dài như sau: HB = 25cm, Hc = 36cm. Vậy đường cao AH có độ dài là
Mong mng giúp ạ
câu1 rút gọn
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b)\(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(x\ne\sqrt{2},x\ne-\sqrt{2}\right)\)
c)\(\sqrt{9\text{x}^2}-2\text{x}\left(x< 0\right)\)
d)\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
e)\(\dfrac{x^2-5}{x+\sqrt{5}}\left(x\ne-\sqrt{5}\right)\)
\(a,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=-1\)
\(b,\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(dk:x\ne\pm\sqrt{2}\right)\\ =\dfrac{x^2+2\sqrt{2}x+\sqrt{2^2}}{x^2-\sqrt{2^2}}\\ =\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\\ =\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\)
\(c,\sqrt{9x^2}-2x\left(dk:x< 0\right)\\ =\sqrt{3^2}.\sqrt{x^2}-2x\\ =3\left|x\right|-2x\\ =-3x-2x\\ =-5x\)
\(d,\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{\sqrt{2^2}+2.3\sqrt{2}+3^2}-3+\sqrt{2}\\ =\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}\\ =\sqrt{2}+3-3+\sqrt{2}\\ =2\sqrt{2}\)
\(e,\dfrac{x^2-5}{x+\sqrt{5}}\left(dk:x\ne-\sqrt{5}\right)\\ =\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\\ =x-\sqrt{5}\)
rút gọn các biểu thức sau
\(B=\dfrac{3\text{x}^2+6\text{x}+12}{x^3-8\dfrac{ }{ }}\)
C=\(\left(\dfrac{x+1}{2\text{x}-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2\text{x}+2}\right).\dfrac{4\text{x}^2-4}{5}\)
E=\(\dfrac{x^2-10\text{x}+25}{x^2-5\text{x}}\)
c: \(E=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
C=\(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{\text{5-x}}{\text{1-x}^{\text{2}}}\right)\):\(\dfrac{1-2x}{\text{x}^{\text{2}}-1}\)
a) Rút gọn
\(C=\dfrac{-\left(x+1\right)+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{2}{1-2x}\)
\(C=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Rightarrow C=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2\left(1-x\right)-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{-\left(1-x\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=-2.\dfrac{-1}{1-2x}\)
\(\Rightarrow C=\dfrac{2}{1-2x}\)
P=\(\left(\dfrac{\text{3x^2+ 3x − 3}}{\text{x^2 + x − 2 }}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\)
a,rút gọn P
b,tính P với x2-x-6=0
c,tìm x để p>0
Bạn xem lại \(a,b\) mình làm rồi nha.
\(c,P>0\Leftrightarrow\left(x+1\right)^2>0\) (luôn đúng \(\forall x\))
Vậy với mọi giá trị x thì \(P>0\).
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)