Chứng minh:
S= 5/20 + 5/21 + 5/22 + 5/23 + 5/24 > 1
S=5/20+5/21+5/22+5/23+5/24 HÃY CHỨNG MINH S>1
Ta có: \(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy S > 1
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy \(S>1\)
S = 5/20 + 5/21 + 5/22 + 5/23 + 5/24
tính giá trị biểu thức và chứng minh S > 1
Giải:
Ta có:
\(\dfrac{5}{20}>\dfrac{5}{25}\) ; \(\dfrac{5}{21}>\dfrac{5}{25}\) ;\(\dfrac{5}{22}>\dfrac{5}{25}\) ; \(\dfrac{5}{23}>\dfrac{5}{25}\) ; \(\dfrac{5}{24}>\dfrac{5}{25}\)
\(\Rightarrow S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)
Vậy \(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>1\) ( đpcm )
Giải:
Dễ thấy:
\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)
\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)
\(.....................\)
\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)
Cộng vế theo vế ta có:
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)
Vậy \(S>1\) (Đpcm)
\(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)
\(\Rightarrow S>1\)
S=5/20+5/21+5/22+5/23+5/24
Đề bắt buộc chúng ta phải làm gì vậy bạn???
Tính hay sao???
Chứng minh rằng: 1/5+1/20+1/21+1/22+1/23+1/24+1/25+1/101+1/102+1/103+1/104 +1/105<1/2
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105) Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên 1/21+1/22+1/23+1/24+1/25<5×1/20<1/4 Tương tự 1/101+1/102+1/103+1/104+1/105<5×1/100<1/20 1/5+1/20+1/20=6/20=3/10 1/5+(<1/4)+(<1/20)<1/2 1/2=5/10 3/10<5/10 vậy suy ra điều cần chứng minh
Chứng minh rằng: 1/5+1/20+1/21+1/22+1/23+1/24+1/25+1/101+1/102+1/103+1/104 +1/105<1/2
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105)
Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên
1/21+1/22+1/23+1/24+1/25<5×1/20<1/4
Tương tự
1/101+1/102+1/103+1/104+1/105<5×1/100<1/20
1/5+1/20+1/20=6/20=3/10
1/5+(<1/4)+(<1/20)<1/2
1/2=5/10
3/10<5/10 vậy suy ra điều cần chứng minh
M= \(\frac{5}{20}\)+\(\frac{5}{21}\)+\(\frac{5}{22}\)+\(\frac{5}{23}\)+\(\frac{5}{24}\)
chứng minh M >1
Do \(\frac{5}{20}>\frac{5}{21};\frac{5}{21}>\frac{5}{22};\frac{5}{22}>\frac{5}{23};\frac{5}{23}>\frac{5}{24}\)
Mà \(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5.\frac{5}{25}=1\)
Vậy M > 1
Ai thấy đúng k nha
Cho s=5/20+5/21+5/22+5/23+...+5/49.chứng minh rằng: 3 < s < 8
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8
\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5
+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\frac{3}{5}\Rightarrow S>3\) (2)
Từ (1)(2) => 3 < S < 8
Này Trần Thị Loan à, tớ thấy cậu nên
thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"
nghe hợp lý hơn.
đáng lẽ ra 1/30+1/31 + ... + 1/34 < 1/30 + 1/30 + ... + 1/30 = 5/30 = 1/6
SAI RỒI
RỨA MÀ CHO ĐÚNG
Cho S =5/20+5/21+5/22+5/23+..........+5/49. Chứng minh rằng 3<S<8