giải hệ phương trình
x^2+xy+y^2=1
x-y-xy=3
Giải hệ phương trình
8x + xy - 3y = 24
Giải hệ phương trình
x^2+y^2=1
x^3+y^3=1
Giải hệ phương trình 1 x − x y = x 2 + x y − 2 y 2 ( 1 ) x + 3 − y 1 + x 2 + 3 x = 3 ( 2 )
1 x − x y = x 2 + x y − 2 y 2 ( 1 ) x + 3 − y 1 + x 2 + 3 x = 3 ( 2 )
Điều kiện: x > 0 y > 0 x + 3 ≥ 0 x 2 + 3 x ≥ 0 ⇔ x > 0 y > 0
( 1 ) ⇔ y − x y x = ( x − y ) ( x + 2 y ) ⇔ ( x − y ) x + 2 y + 1 y x = 0 ⇔ x = y do x + 2 y + 1 y x > 0 , ∀ x , y > 0
Thay y = x vào phương trình (2) ta được:
( x + 3 − x ) ( 1 + x 2 + 3 x ) = 3 ⇔ 1 + x 2 + 3 x = 3 x + 3 − x ⇔ 1 + x 2 + 3 x = x + 3 + x ⇔ x + 3 . x − x + 3 − x + 1 = 0 ⇔ ( x + 1 − 1 ) ( x − 1 ) = 0 ⇔ x + 3 = 1 x = 1 ⇔ x = − 2 ( L ) x = 1 ( t m ) ⇒ x = y = 1
Vậy hệ có nghiệm duy nhất (1;1)
Giải bất phương trình
x^2>= 1
x^2 < 1
x^2+3x>=0
x^2+3x+3 >=0
a, \(x^2\)≥1
\(\Leftrightarrow\) x>1
b, \(x^2\)<1
\(\Rightarrow\) x∈∅
c, \(x^2\)+3x ≥ 0
\(\Leftrightarrow\) \(x^2\)≥-3x
\(\Leftrightarrow\) x≥-3
d, \(x^2\)+3x+3≥0
\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)
\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0
\(\Leftrightarrow\)\(x^2\)≥\(\dfrac{9}{4}\)
\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)
Giải hệ phương trình x^2+y^2+xy=7 và 9x^3=xy^2+70(x-y)
Giải hệ phương trình:
(x+y)/xy + xy/(x+y) =5/2
và (x-y)/xy + xy/(x-y) =10/3
Giải hệ phương trình: \(\hept{\begin{cases}y^4-xy^3+x^2y^2=16\\y^2-xy^3-xy\end{cases}}\)
Giải hệ phương trình sau: x^2+y^2+xy=3 và xy+3x^2=4
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4\left(x^2+y^2+xy\right)=3\left(3x^2+xy\right)\text{ }\left(\text{1}\right)\\3x^2+xy=4\end{cases}}\)
\(\left(1\right)\Leftrightarrow5x^2-xy-4y^2=0\Leftrightarrow\left(x-y\right)\left(5x+4y\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\5x+4y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=x\\y=-\frac{5}{4}x\end{cases}}\)
\(\text{TH1:}y=x\), ta được hệ \(\hept{\begin{cases}x=y\\3x^2+xy=4\end{cases}}\)
TH2: \(y=-\frac{5}{4}x\), ta có hệ \(\hept{\begin{cases}y=-\frac{5}{4}x\\3x^2+xy=4\end{cases}}\)
754755576777777777777
Giải hệ phương trình:
(x+3)(y-5) = xy
(x-2)(y+5) = xy