Cho \(C=2\sqrt{x}-3;maxC=u.\) Tìm u.
Cho biểu thức:\(C=\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}}\)
A)Thu gọn và tính giá trị của C tại \(x=3-\sqrt{3}\)
B)Giải phương trìnhC=x-1
C)Tìm tất cả các giá trị của x để \(C>C^3\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
Thay x=2 vào A, ta được:
\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)
cho C=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{b\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. rút gọn C
b. tìm x để C=\(\frac{1}{2}\)
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm x để A=1
b) Tính A với \(x=4-2\sqrt{3}\)
c) Tìm x để 5A nguyên
a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
cho C=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{b\sqrt{x}-2}{1-\sqrt{x}}+\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. rút gọn C
b. tìm x để C=\(\dfrac{1}{2}\)
Cho C = \(\frac{-3\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(3+\sqrt{x}\right)\left(\sqrt{x}+2\right)}\). Tìm x để C < -1
a) cho x=\(1+\sqrt[3]{2}\) tính B = \(x^4-2x^5+x^3-3x^2+1942\)
b) cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) tính P =\(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
c) cho x = \(1+\sqrt[3]{2}\)\(+\sqrt[3]{4}\) tính C = \(x^5-4x^4+x^3-x^2-2x+2015\)
Cho biểu thức:
\(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)
với x ≥ 0 , x ≠ 1 , x ≠ 4
a. Rút gọn C
b. Tính C khi x = 36
a) Ta có: \(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)
\(=\dfrac{x-4\sqrt{x}+4-\left(x+\sqrt{x}-2\right)+6\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+2\sqrt{x}-4-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{1}{\sqrt{x}-1}\)
b) Thay x=36 vào C, ta được:
\(C=\dfrac{1}{6-1}=\dfrac{1}{5}\)