Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng ct
Xem chi tiết
missing you =
16 tháng 12 2021 lúc 23:23

\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)

\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)

\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)

\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)

\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)

\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)

\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

với \(x=y=0\) không là nghiệm của hệ pt

với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)

\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 23:23

\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)

PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)

Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)

Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)

Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

đấng ys
Xem chi tiết
missing you =
13 tháng 1 2022 lúc 22:14

\(dk:x>2\)

\(pt\Leftrightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)

\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\left(1\right)\)

\(TH1:\)\(\Delta=0\Rightarrow\left(2m+3\right)^2-24m=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow x=\dfrac{2.3}{2}+3=6>2\left(thỏa\right)\)

\(TH2:x1\le2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m+3\right)^2-24m>0\\x1x2-2\left(x1+x2\right)+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{3}{2}\\m< \dfrac{3}{2}\end{matrix}\right.\\6m-2\left(2m+3\right)+4\le0\Leftrightarrow m\le1\end{matrix}\right.\)\(\Leftrightarrow m\le1\)

\(\Rightarrow m\in(-\text{∞};1]\cup\left\{\dfrac{3}{2}\right\}\)

Nguyễn Việt Lâm
13 tháng 1 2022 lúc 21:38

ĐKXĐ: \(x>2\)

\(Pt\Rightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)

\(\Leftrightarrow f\left(x\right)=x^2-2\left(m+1\right)x+6m=0\)

\(\Delta'=\left(m+1\right)^2-6m=m^2-4m+1\)

TH1: pt trên có nghiệm kép và \(-\dfrac{b}{2a}>2\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m+1=0\\m+1>2\end{matrix}\right.\)  \(\Rightarrow m=2+\sqrt{3}\)

TH2: pt có 1 nghiệm bằng 2, 1 nghiệm lớn hơn 2

\(\Rightarrow4-4\left(m+1\right)+6m=0\Rightarrow m=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) (ktm)

TH3: pt có 2 nghiệm thỏa mãn \(x_1< 2< x_2\)

\(\Rightarrow f\left(2\right)< 0\Rightarrow2m< 0\Rightarrow m< 0\)

Vậy \(\left[{}\begin{matrix}m< 0\\m=2+\sqrt{3}\end{matrix}\right.\)

Aiko Mi
Xem chi tiết
Aiko Mi
Xem chi tiết
Trần Thị Thu Ngân
11 tháng 3 2017 lúc 20:54

Tớ không biết chắc đâu nhé ta có từ pt:

x2+x-2=x2-(m-1)x-m \(\Leftrightarrow\) m.x+m-2=0

Nếu m=0 thì pt vô nghiệm 0x=2

Nếu m khác 0 thì pt là pt bậc nhất có một nghiệm duy nhất là x= \(\dfrac{2-m}{m}\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 18:31

ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)

\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm

- Với \(x\ge0\)

\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)

\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)

+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\) 

\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)

\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm

+ Với \(m^2-3m+2\ne0\)

\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương

\(\Rightarrow x_1x_2=m^2-3m+2< 0\)

\(\Rightarrow1< m< 2\)

Salty Hiếu
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 0:06

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Tử Đằng
30 tháng 1 2018 lúc 20:50

1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)

\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)

\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)

\(\Leftrightarrow x\left(m+1\right)-2=0\)

Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)

Vậy nếu m # -1 thì Pt có nghiệm duy nhất

3 ,

\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)

\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)

Mik chỉ làm đến đây được thôi

P/S : Đăng từng bài 1 thôi :))

Trần Quốc Lộc
19 tháng 2 2018 lúc 13:30

Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)

ĐKXĐ: \(x\ne m;x\ne1\)

\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)

+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)

\(\Leftrightarrow x=\dfrac{2-m}{m}\)

\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)

\(\Leftrightarrow S=\varnothing\)

Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)

Trần Quốc Lộc
19 tháng 2 2018 lúc 13:48

Câu 2:

\(\text{a) }\left(k^2-9\right)x=k^2+3k\\ \Leftrightarrow\left(k+3\right)\left(k-3\right)x=k\left(k+3\right)\)

+) Với \(k\ne\pm3\Leftrightarrow x=\dfrac{k}{k-3}\)

\(\Rightarrow S=\left\{\dfrac{k}{k-3}\right\}\)

+) Với \(k=-3\Leftrightarrow0x=0\left(\text{Nghiệm đúng }\forall x\right)\)

\(\Rightarrow S=R\)

+) Với \(k=3\Leftrightarrow0x=18\left(\text{Vô nghiệm }\right)\)

\(\Rightarrow S=\varnothing\)

Vậy với \(k\ne\pm3\) phương trình có nghiệm \(x=\dfrac{k}{k-3}\)

Với \(k=-3\) phương trình vô số nghiệm

Với \(k=3\) phương trình vô nghiệm

\(\text{ b) }m^2x+5=m\left(x+5\right)\\ \Leftrightarrow m^2x+5=mx+5m\\ \Leftrightarrow m^2x-mx=5m-5\\ \Leftrightarrow mx\left(m-1\right)=5\left(m-1\right)\)

+) Với \(m\ne0;m\ne1\Leftrightarrow x=\dfrac{5}{m}\)

\(\Rightarrow S=\left\{\dfrac{5}{m}\right\}\)

+) Với \(m=0\Leftrightarrow0x=-5\left(\text{Vô nghiệm }\right)\)

\(\Rightarrow S=\varnothing\) +) Với \(m=1\Leftrightarrow0x=0\left(\text{Nghiệm đúng }\forall x\right)\) \(\Rightarrow S=R\)

Vậy với \(m\ne0;m\ne1\) phương trình có nghiệm \(x=\dfrac{5}{m}\)

Với \(m=1\) phương trình vô số nghiệm

Với \(m=0\) phương trình vô nghiệm