Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

Thienminh
Xem chi tiết

            A =                 \(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{3}{2^2}+\dfrac{3}{2^3}+.....+\dfrac{3}{2^{2021}}+\dfrac{3}{2^{2022}}\)

     \(2\times\)A =             1 + 3+   \(\dfrac{3}{2}\) +\(\dfrac{3}{2^2}\)  + \(\dfrac{3}{2^3}\)+...........+\(\dfrac{3}{2^{2021}}\)

\(\times\) A - A =           4 - \(\dfrac{1}{2}\) - \(\dfrac{3}{2^{2022}}\)

             A =          \(\dfrac{7}{2}\)    - \(\dfrac{3}{2^{2022}}\)

            B =                  2 \(\times\dfrac{3}{2^{2023}}\)

      A - B  =         \(\dfrac{7}{2}-\dfrac{3}{2^{2022}}\)  - 2 \(\times\) \(\dfrac{3}{2^{2023}}\)

     A - B =           \(\dfrac{7}{2}\)   - \(\dfrac{3}{2^{2022}}\) - \(\dfrac{3}{2^{2022}}\)

    A - B =            \(\dfrac{7}{2}\) - \(\dfrac{6}{2^{2022}}\)

   A - B =            \(\dfrac{7}{2}\) - \(\dfrac{3}{2^{2021}}\)

 

 

 

Thienminh
Xem chi tiết
Akai Haruma
30 tháng 6 2023 lúc 22:55

Lời giải:

$\Rightarrow A-B=-1$

Lâm Nguyễn
Xem chi tiết
Huy Nhật Hoàng
Xem chi tiết
Hai lê
3 tháng 1 2024 lúc 20:47

chịu

 

Huy Nhật Hoàng
Xem chi tiết
Akai Haruma
5 tháng 1 2024 lúc 18:03

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

Đặng bảo
Xem chi tiết
Nguyễn Ngọc Anh Minh
6 tháng 1 2024 lúc 7:41

\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)

\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)

\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)

Đặt 

\(C=3+3^2+3^3+...+3^{2023}\)

\(3C=3^2+3^3+3^4+...+3^{2024}\)

\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)

\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)

\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)

\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)

dao thanh bao bao
Xem chi tiết

Sửa đề: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)

Ta có: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)

=>\(3a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}\)

=>\(3a+a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)

=>\(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)

Đặt \(b=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)

=>\(3b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}\)

=>\(3b+b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)

=>\(4b=-1-\frac{1}{3^{2023}}=\frac{-3^{2023}-1}{3^{2023}}\)

=>\(b=\frac{-3^{2023}-1}{4\cdot3^{2023}}\)

Ta có: \(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)

=>\(4a=1+\frac{-3^{2023}-1}{4\cdot3^{2023}}-\frac{2024}{3^{2024}}=1+\frac{-3^{2024}-3}{4\cdot3^{2024}}-\frac{8096}{4\cdot3^{2024}}\)

=>\(4a=1-\frac{3^{2024}+8099}{4\cdot3^{2024}}=1-\frac14-\frac{8099}{4\cdot3^{2024}}=\frac34-\frac{8099}{4\cdot3^{2024}}\)

=>\(4a<\frac34\)

=>\(a<\frac{3}{16}\)

\(\frac{3}{16}<1<\frac{20}{3}\)

nên \(a<\frac{20}{3}\)

19319
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 11 2023 lúc 20:23

`#3107.101107`

1.

`a,`

\(A=1+3+3^2+3^3+...+3^{2012}\)

`3A = 3 + 3^2 + 3^3 + ... + 3^2013`

`3A - A = (3 + 3^2 + 3^3 + ... + 3^2013) - (1 + 3 + 3^2 + 3^3 + ... + 3^2012)`

`2A = 3 + 3^2 + 3^3 + ... + 3^2013 - 1 - 3 - 3^2 - 3^3 - ... - 3^2012`

`2A = 3^2013 - 1`

`=> A = (3^2013 - 1)/2`

Vậy, `A = (3^2013 - 1)/2`

`b,`

\(B=1+10+10^2+10^3+...+10^{2023}\)

`10B = 10 + 10^2 + 10^3 + ... + 10^2024`

`10 B - B = (10 + 10^2 + 10^3 + ... + 10^2024) - (1 - 10 + 10^2 + 10^3 + ... + 10^2023)`

`9B = 10 + 10^2 + 10^3 + ... + 10^2024 - 1 - 10^2 - 10^3 - ... - 10^2023`

`9B = 10^2024 - 1`

`=> B = (10^2024 - 1)/9`

Vậy, `B = (10^2024 - 1)/9.`

Yeutoanhoc
2 tháng 11 2023 lúc 20:20

`a)A=1+3+3^2+3^3+...+3^2012`

`=>3A=3+3^2+3^3+...+3^2013`

`=>3A-A=2A=3^2013-1`

`=>A=(3^2013-1)/2`

`b)B=1+10+10^2+...+10^2024`

`=>10B=10+10^2+10^3+....+10^2025`

`=>10B-B=9B=10^2025-10`

`=>B=(10^2025-10)/9`