I x^2-1 I=2x+1
Giải giúp mình với mn
\(\sqrt{-2x^2+6}\) =x-1
giải pt trên giúp e với ạ......
\(\sqrt{-2x^2+6}=x-1\left(đk:\sqrt{3}\ge x\ge1\right)\)
\(\Leftrightarrow-2x^2+6=x^2-2x+1\)
\(\Leftrightarrow3x^2-2x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\)
x^5-x^3+x^2-1
Giải nhanh giúp mình với, cảm ơn
\(x^5-x^3+x^2-1=x^3\left(x^2-1\right)+\left(x^2-1\right)=\left(x^2-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x+1\right)^2\left(x^2-x+1\right)\)
tìm x
a, 3/4 + -1/2x = 1
b, 1/6 :x -1/3 = 1/2
c,(x+1/5)2=9
d,22/9-(x+1/2)2=7/3
e, 2|x|+1/2=2
f,|x+1/2|-1/6=1
giải giúp mình vs mk đang cần gấp
\(a,\Leftrightarrow-\dfrac{1}{2}x=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\\ b,\Leftrightarrow\dfrac{1}{6}:x=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\Leftrightarrow x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\\ c,\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=3\\x+\dfrac{1}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\\x=-\dfrac{16}{5}\end{matrix}\right.\)
\(d,\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{22}{9}-\dfrac{7}{3}=\dfrac{1}{9}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{3}\\x+\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\\ e,\Leftrightarrow2\left|x\right|=2-\dfrac{1}{2}=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{3}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
\(f,\Leftrightarrow\left|x+\dfrac{1}{2}\right|=1+\dfrac{1}{6}=\dfrac{7}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{7}{6}\\x+\dfrac{1}{2}=-\dfrac{7}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
e: ta có: \(2\left|x\right|+\dfrac{1}{2}=2\)
\(\Leftrightarrow2\left|x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x\right|=\dfrac{3}{4}\)
hay \(x\in\left\{\dfrac{3}{4};-\dfrac{3}{4}\right\}\)
tìm m đa thức f(x)=\(3x^2+2x^2-7x-m+2\) chia hết cho g(x)=x+1
giải chi tiết giúp mình nhé đừng đưa mỗi đáp án thanks
Cho g(x) = 0
x + 1 = 0
x = -1
Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)
Hay f(1) = 0
3.1² + 2.1² - 7.1 - m + 2 = 0
-2 - m + 2 = 0
m = 0
Vậy m = 0 thì f(x) chia hết cho g(x)
Giải chi tiết của em đây :
F(x) = 3x2 + 2x2 - 7x - m + 2
F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)
Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0
\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0
3 + 2 + 7 - m + 2 =0
14 - m = 0
m = 14
Kết luận với m = 14 thì F(x) chia hết cho x + 1
cho đa thức f(x) = x3 +ax2+bx-2
Xác định hệ số a,b biết đa thức có 2 nghiệm x1= -1; x2 = 1
Giải giúp mình với! Mình đang cần gấp !!!!!!! :3
làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!
:((((((((((
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
Tìm Min của:
I x^2 - x + 1 I + I x^2 - x + 2 I
I x - 2 I + I 2x - 3 I + I 4x - 1 I + I 5x + 10 I
Mọi người giúp mình với mai mình phải nộp rồi
Giúp mình với mn ơi 2x-|x+1|=-1/2 2x-|x-1|=-1/2
1-x/(x+1)+3=2x+3/x+1giải pt sau mong mọi người giúp đỡ.Mình đang cần gấp
DKXD : x khac -1
\(\frac{-x}{x+1}\)+ 3 =\(\frac{2x+3}{x+1}\)
<=> \(\frac{-x}{x+1}\)+\(\frac{3\left(x+1\right)}{x+1}\)= \(\frac{2x+3}{x+1}\)
=> -x + 3x +3 = 2x +3
<=> 2x -2x =3-3
<=> 0x=0
<=> x=0(TMDK)
1. Tìm x biết:
a) I x-0,6 I < 1/2
b) I 2x-1 I > I -3/4 I
Dấu gạch thẳng là giá trị tuyệt đối ạ
mn giúp em với
Bài giải
a, \(\left|x-0,6\right|< \frac{1}{2}\)
* Nếu \(x-0,6< 0\) thì :
\(-\left(x-0,6\right)< \frac{1}{2}\)
\(-x+\frac{3}{5}< \frac{1}{2}\)
\(-x< \frac{1}{2}-\frac{3}{5}\)
\(-x< -\frac{1}{10}\)
\(x< \frac{1}{10}\)
Bài giải
a, \(\left|x-0,6\right|< \frac{1}{2}\)
* Nếu \(x-0,6< 0\) thì :
\(-\left(x-0,6\right)< \frac{1}{2}\)
\(-x+\frac{3}{5}< \frac{1}{2}\)
\(-x< \frac{1}{2}-\frac{3}{5}\)
\(-x< -\frac{1}{10}\)
\(x< \frac{1}{10}\)
Bài giải
b, \(\left|2x-1\right|>\left|-\frac{3}{4}\right|\)
\(\left|2x-1\right|>\frac{3}{4}\)
* Nếu \(2x-1< 0\) ta có :
\(-\left(2x-1\right)>\frac{3}{4}\)
\(-2x+1>\frac{3}{4}\)
\(-2x>\frac{3}{4}-1\)
\(-2x>-\frac{1}{4}\)
\(x>-\frac{1}{4}\text{ : }\left(-2\right)\)
\(x>\frac{1}{8}\)
* Nếu \(2x-1>0\) ta có :
\(2x-1>\frac{3}{4}\)
\(2x>\frac{3}{4}+1\)
\(2x>\frac{7}{4}\)
\(x>\frac{7}{4}\text{ : }2\)
\(x>\frac{7}{8}\)