Cho ∆ ABC, kẻ đường cao AH ( H thuộc BC ).
a. Vì sao độ dài đoạn thẳng AH nhỏ hơn độ dài đoạn thẳng AC.
b. Gọi M là trung điểm của AC. Lấy điểm D sao cho M là trung điểm của HD. Chứng minh ∆ HMC = ∆ DMA.
c. Chứng minh AM = 1/2 AC.
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là
trung điểm của đoaṇ thẳng BC
b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là
trung điểm
của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là
trung điểm của đoaṇ thẳng BC
b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là
trung điểm
của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE
Cho tam giác ABC có AB=AC = 10cm, BC = 12cm. Kẻ A H ⊥ B C tại H.
a) Chứng minh rằng ∆ A B H = ∆ A C H . Từ đó suy ra H là trung điểm của đoạn thẳng BC.
b) Tính độ dài đoạn thẳng AH.
c) Kẻ H I ⊥ A B tại I và H K ⊥ A C tại K. Vẽ các điểm D và E sao cho I, K lần lượt là trung điểm của HD và HE. Chứng minh: AE = AH
d) Tam giác ADE là tam giác gì? Vì sao? Chứng minh DE // BC.
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE.
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là
trung điểm của đoaṇ thẳng BC
b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là
trung điểm
của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE
Xét hai tam giác vuông ΔABH ΔABH và ΔACH ΔACH:
Ta có: AH cạnh chung
AB=AC
Vậy ΔABH ΔABH = ΔACH ΔACH (c.g.c)
AH là đường cao đồng thời đường trung tuyến của ΔABC ΔABC cân tại A (AB=AC)
Vậy HC= HB hay H là trung điểm BC
2. BH = HC = BC2= 122 = 6BC2 = 122 = 6 cm
Áp dụng định lí Py-ta-go:
AH = √AB2 − HB2= √102 − 62 = 8AH = AB2− HB2 = 102− 62 = 8 cm
3. Ta có: AK là đường cao ΔAEH ΔAEH
Mà KE = KH nên AK cũng là đường trung tuyến ΔAEH ΔAEH
Vậy ΔAEH ΔAEH cân tại A
Nên AE=AH (1)
4. Ta có: AI là đường cao ΔADH ΔADH
Mà IH = ID nên AI cũng là đường trung tuyến ΔADH ΔADH
Vậy ΔAEH ΔAEH cân tại A
Nên AD = AH (2)
Từ (1)(2) Suy ra: AE=AD hay ΔAED ΔAED cân tại A
5. Xét ΔAEF ΔAEF và ΔADF ΔADF:
Ta có: AF cạnh chung
AE=AD
\(\widehat{AEF}\)=\(\widehat{ADF}\) \(\widehat{AEF}\)=\(\widehat{ADF}\)
Vậy ΔAEFΔAEF =ΔADFΔADF (c.g.c)
Nên EF = FD; AF là đường trung tuyến ΔAED ΔAED cân nên đồng thời đường cao nên AF vuông góc ΔAED ΔAED (3)
AF vuông góc BC (4)
Từ (3)(4) Suy ra: DE//BC
6. Để A là trung điểm ED thì ΔABC ΔABC vuông cân tại A
Giả sử ΔABC ΔABC vuông cân tại A nên AH=HB (đường cao đồng thời trung tuyến) IA=IB (đường cao đồng thời trung tuyến)
Tứ giác ADBH có hai đường chéo cắt nhau tại trung điểm mổi đường nên ADBH là hình bình hành
CM tương tự cho tứ giác AECH
Mà C,H,B thẳng hàng và HC=HB nên E,A,D thẳng hàng và A là trung điểm ED
Hình đó nha bn ^^
#hoc_tot#
:>>>
Haizz , vì mình chưa làm CTV nên không đăng hình được
Bạn vào thống kê hỏi đáp của mình mà xem hình nhé
T_T
#Hoc_tot#
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là
trung điểm của đoaṇ thẳng BC
b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là
trung điểm
của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE
Cho Δ ABC vuông tại A, có AB = 6cm, AC = 8cm.
a) Tính độ dài cạnh BC.
b) Kẻ AH vuông góc với BC tại H ( H ∈ BC). Trên đoạn thẳng HC lấy điểm D sao cho HD = DB. Chứng minh AB =AD.
c) Trên tia AH lấy điểm K sao cho H là trung điểm của AK. Chứng minh KD vuông góc với AC.
Giúp mình với mình cần gấp đúng mình tick hết nhé.
a. Xét ΔABC vuông tại A, có:
AB2 + AC2 = BC2 (Định lý Py-ta-go)
⇒ 62 + 82 = BC2 (thay số)
⇒ BC2 = 100
⇒ BC = 10
b) Có: AH vuông góc với BC (gt)
⇒ góc AHB = góc AHD (tính chất ....)
Xét ΔAHB và ΔAHD, có:
BH = HD (gt)
góc AHB = AHD (cmt)
AH chung
⇒ ΔAHB = ΔAHD (c.g.c)
⇒ AB = AD (cặp cạnh tương ứng) (đpcm)
a. Xét ΔABC vuông tại A, có:
AB2 + AC2 = BC2 (Định lý Py-ta-go)
⇒ 62 + 82 = BC2 (thay số)
⇒ BC2 = 100
⇒ BC = 10
b) Có AH vuông góc với BC (gt)
⇒ góc AHB = góc AHD
Xét ΔAHB và ΔAHD, có:
BH = HD (gt)
AHB = AHD (cmt)
AH : chung
⇒ ΔAHB = ΔAHD (c.g.c)
⇒ AB = AD (cặp cạnh tương ứng)
Cho tam giác ABC vuông tại A. Biết AC = 6cm ; BC = 10cm.
a) Tính độ dài cạnh AB.
b) Gọi M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho DM = CM. Chứng minh Tính độ dài đoạn thẳng DB.
c) Kẻ . Chứng minh AH = BK
HELP GIÚP MÌNH
a)
Áp dụng định lý Py-ta-go vào ΔABC vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
⇔ \(AB^2+6^2=10^2\)
⇒ \(AB^2=64\)
⇔ \(AB=8\) \(\left(cm\right)\)
b)
Xét ΔBDM và ΔACM có:
DM = CM (gt)
BM = AM (M là trung điểm của AB)
\(\widehat{BMD}=\widehat{AMC}\) (đối đỉnh)
⇒ \(\Delta BDM=\Delta ACM\) (c.g.c)
⇒ BD = AC (2 cạnh tương ứng)
⇔ BD = 6 (cm)
Cho Tam Giác ABC vuông tai A ( AC> AB) , đường cao AH ( H thuộc BC) . Trên Tia HC lấy điểm D sao cho HD= HA. Đường vuông góc vs BC tại D cắt AC tại E .
a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng . Tính độ dài đoạn BE theo m = AB
b) gọi M là trung điểm của đoạn thẳng BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng .
c) Tia AM cắt BC tại G . C/m : GB/ BC= HD/ AH+ HC
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Cho tam giác ABC vuông tại A đường cao AH và có AB =4,5cm , AC =6cm
a)Tính độ dài các đoạn thăng BC, AH / b) Kẻ HD vuông góv với AB(D thuộc AB) HE vuông góc với AC(E thuộc AC).Chứng minh DE tiếp xúc với đường tròn đi qua 3 điểm E,H,C / c)Gọi I là giao điểm của AH và DE .M là trung điểm của HC .Tính độ dài MI
cho tam giác abc vuông tại a biết ab=6cm bc=10cm. a) tính độ dài cạnh AB.
b) gọi m là trung điểm của ab. trên tia đối của tia mc lấy điểm d sao cho dm = cm. tính độ dài đoạn thẳng db
c) kẻ ah vuông góc với bc, (h thuộc bc). chứng minh ah = bk
Sửa đề :
a, Tính độ dài cạnh AC
Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :
\(AB^2+AC^2=BC^2\)
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\)
b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :
\(MB=MA\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )
\(MD=MC\left(gt\right)\)
= > \(\Delta AMC=\Delta DMB\)
= > DB = AC = 8 cm ( 2 cạnh tương ứng )
c, thiếu đề bài
ta có :
c. mình đâu có thấy điểm K nào đâu nhỉ