Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Dang
Xem chi tiết
Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 12:13

Câu 1:

a: \(\sqrt{9\cdot25}=3\cdot5=15\)

b: \(=3\sqrt{2}\cdot\sqrt{2}+4\sqrt{2}\cdot\sqrt{2}-5\sqrt{2}\cdot\sqrt{2}\)

=6+8-10

=4

hồ khánh chi
Xem chi tiết
mình là hình thang hay h...
23 tháng 4 2022 lúc 18:15

1)sao phân biệt được v của ai A hay B sửa vA và vB

a)thời gian của hai xe gặp nhau

t=sAB/vA+vB=2/9h=800s

b)sau 0,5h thì người đi từ A đi được 

sA=vA.tA=30km

sau 0,5h thì người đi từ B đi được 

sB=vB.tB=15km

khoảng cách của hai xe lúc này 

s1=(sA+sB)-sAB=25km

c)sau 1h thì người đi từ A đi được

sA1=vA.tA1=60km

sau 1h thì người đi từ B đi được 

sB1=vB.tB1=30km 

khoảng cách của hai xe lúc này 

s2=(sA+sB)-sAB=70km

d)tổng quãng đường đi được ;20-10=10km

sA+sB=10

vA.tA2+vB.tB2=10

60.t+30.t=10

90t=10

t=1/9h

 

mình là hình thang hay h...
23 tháng 4 2022 lúc 18:15

câu 2,3 giống cách làm nhưng đáp án khác dựa vào đó làm dễ mà

Thiên Phong
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 22:51

2b.

\(Q=\dfrac{cosx}{sinx}+\dfrac{sinx}{1+cosx}=\dfrac{cosx\left(1+cosx\right)+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx\left(1+cosx\right)}=\dfrac{1}{sinx}\)

4b.

\(\Delta\) có 1 vtpt là (3;-4)

Gọi d là đường thẳng qua M và vuông góc \(\Delta\Rightarrow d\) nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x-4\right)+3\left(y+2\right)=0\Leftrightarrow4x+3y-10=0\)

H là giao điểm d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-4y+5=0\\4x+3y-10=0\end{matrix}\right.\) \(\Rightarrow H\left(1;2\right)\)

Khánh Ngân
Xem chi tiết
Lê Thị Thục Hiền
21 tháng 6 2021 lúc 21:44

2b)

Áp dụng BĐT bunhiacopxki có:

\(\left(1+1\right)\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\)

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4\right)\ge\dfrac{\left(x+y\right)^4}{4}\Leftrightarrow x^4+y^4\ge\dfrac{1}{8}.\left(x+y\right)^4\)

Dấu "=" xảy ra khi x=y

3)

Áp dụng bđt Holder có:

\(\left(x^3+y^3+z^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(x+y+z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\)

Dấu "=" xảy ra khi x=y=z

 

Lê Thị Thục Hiền
21 tháng 6 2021 lúc 21:55

3)(Nếu không dùng Holder)

Với x,y,z >0, ta có bđt sau:\(2x^3+2y^3+2z^3\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\) (1)

Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)+\left(y+z\right)\left(y^2-yz+z^2\right)-yz\left(y+z\right)+\left(z+x\right)\left(z^2-zx+x^2\right)-zx\left(x+z\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2+\left(y+z\right)\left(y-z\right)^2+\left(z+x\right)\left(z-x\right)^2\ge0\) (lđ)

Áp dụng AM-GM có:

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow\dfrac{2\left(x^3+y^3+z^3\right)}{3}\ge2xyz\) (2)

Từ (1) và (2), cộng vế với vế \(\Rightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(x+z\right)+xz\left(x+z\right)+2xyz\)

\(\Leftrightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3\)

\(\Rightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\) (đpcm)

Mỹ Tâm
Xem chi tiết
Hoàng Tử Hà
6 tháng 5 2021 lúc 17:34

Vi anh hung duoc tren man=> anh that=> k<0

\(-\dfrac{d'}{d}=-3\Leftrightarrow d'=3d\)

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{15}=\dfrac{1}{d}+\dfrac{1}{3d}\Leftrightarrow d=...\)

NoName
Xem chi tiết
Nguyễn Hiền Ngọc
Xem chi tiết
Phương Anh
Xem chi tiết
Toru
5 tháng 8 2023 lúc 18:47

a) (a2 - 1)2 + 4a2

= a4 - 2a2 + 1 + 4a2

= (a2)2 + 2.a2.1 + 12)

=(a2 + 1)2

b) (6x2 + y2)(y2 - 6x2)

= (y2 + 6x2)(y2 - 6x2)

= (y2)2 - (6x2)2

= y4 - 36x4