Cho parabol ( P):Cho parabol ( P) y2 =4x và hai điểm A (0; -4), B (-6;4) . C là điểm trên ( ) P sao cho tam giác ABC có diện tích bé nhất. Tìm tọa độ điểm C .
Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)
a) Xét phương trình hoành độ giao điểm (d) và (P)
\(x^2 = 2(m+1)x - 4\)
\(<=> x^2 -2(m+1) + 4 = 0\) (1)
có \(\Delta' = [-(m+1)]^2 -4\)
\(\Delta' = (m+1)^2- 4\)
(d) và (P) cắt nhau tại hai điểm phân biệt
<=> Phương trình (1) có hai nghiệm phân biệt
<=> \(\Delta' \)> 0
<=> \((m + 1)^2 - 4 >0\)
<=> \((m+1)^2 >4\)
<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)
\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)
b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)
nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x2 = 2(m+1)
x1x2 = 4
Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x2 \(\geq \) 0)
=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)
<=> x1 - 2x1x2 + x2 = 4
<=> (x1 + x2) - 2x1x2=4
<=> 2(m+1) - 2.4 = 4
<=> 2m + 2 - 8 = 4
<=> 2m = 10
<=> m = 5 (T/m)
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\)
Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)
\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)
b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)
Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)
\(\Rightarrow x_1-x_2=4>0\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)
\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)
\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)
Cho Parabol(P) : y=x² và đường thăng (d) : y=(2m-1)x-m+2 ( m là tham số)
A) c)m rằng với mới m đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt
B)Tìm các giá trị m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt A(x1;y1);B(x2;y2) thoả mãn x1y1+x2y2=0
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
\(2m-1=0\Leftrightarrow m=\frac{1}{2}\)\(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – 2m.Tìm các giá trị của m để đường thẳng (D) cắt parabol tại hai điểm phân biệt sao cho biểu thức P=y1+y2-x1x2 đạt giá trị nhỏ nhất
PTHĐGĐ là:
x^2-(m+2)x+2m=0
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=m^2-4m+4
=(m-2)^2
Để PT có hai nghiệm phân biệt thì Δ>0
=>m-2<>0
=>m<>2
P=y1+y2-x1x2
=x1^2+x2^2-x1x2
=(x1+x2)^2-3x1x2
=(m+2)^2-3*2m
=m^2+4m+4-6m
=m^2-2m+1+3
=(m-1)^2+3>=3
Dấu = xảy ra khi m=1
Cho parabol (P): \(y=2x^2+6x-1\)
Tìm giá trị của k để đường thẳng Δ: \(y=x\left(k+6\right)+1\) cắt parabol tại hai điểm phân biệt M,N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: \(4x+2y-3=0\)
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
Cho Parabol (P): y=x2 và đường thẳng d: y = (m - 3)x - m +4
Tìm m để d cắt (P) tại hai điểm phân biệt A( x1; y2 ) và B ( x2; y2) sao cho tam giác ABO vuông tại O
Lời giải:
PT hoành độ giao điểm:
$x^2-(m-3)x-m+4=0(*)$
Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt
Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$
$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$
Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$
Để tam giác $OAB$ vuông tại $O$ thì:
$OA^2+OB^2=AB^2$
$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$
$\Leftrightarrow x_1x_2+y_1y_2=0$
$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$
$\Leftrightarrow x_1x_2(x_1x_2+1)=0$
$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$
$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$
$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)
Cho parabol (P): y = 5 x 2 và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:
A. 1
B. 0
C. 3
D. 2
Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d
5x2 = −4x – 4 ⇔ 5x2 + 4x + 4 = 0
⇔ 4x2 + x2 + 4x + 4 = 0
⇔ x2 + (x + 2)2 = 0(*)
Xét x2 + (x + 2)2 ≥ 0; ∀ x và dấu “=” xảy ra khi
x = 0 x + 2 = 0 ⇔ x = 0 x = − 2 (vô lý)
nên x2 + (x + 2)2> 0, ∀ x
Hay phương trình (*) vô nghiệm
Vậy không có giao điểm của đường thẳng (d) và parabol (P)
Đáp án cần chọn là: B
Cho Parabol \(y=x^2\) . Tìm điểm A thuộc parabol sao cho tiếp tuyến với parabol tại A song song với đường thẳng y = 4x + 5
Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))
Pt hoành độ giao điểm d và (P):
\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)
d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)
Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)