Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Thắng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2019 lúc 12:50

Chọn A

Chuyengia247
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2022 lúc 15:20

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

Thảo Vũ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 13:44

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

Nguyễn Việt Lâm
24 tháng 7 2021 lúc 8:37

\(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\dfrac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

Ta có:

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{4x^2\left(y-1\right)}{y-1}}=4x\)

Tương tự: \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\)

\(\Rightarrow P\ge8\)

\(P_{min}=8\) khi \(x=y=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2019 lúc 6:10

Chọn C

Trần Việt Khoa
Xem chi tiết
Trần Minh Hoàng
16 tháng 1 2021 lúc 22:20

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

NgDQ
Xem chi tiết
Haruno :3
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 15:09

\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)

hưng phúc
26 tháng 9 2021 lúc 15:11

x3 - y3 - xy

= (x - y)(x2 + xy + y2) - xy

Thay x - y = 1 vào, ta đc:

= x2 + xy + y2 - xy

= x2 + y2

Ta có: x2 + y2 có giá trị nhỏ nhất khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 10:21

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)