Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Đinh
Xem chi tiết
NGUYỄN♥️LINH.._.
21 tháng 3 2022 lúc 20:41

AB=5

HC=5

NGUYỄN♥️LINH.._.
21 tháng 3 2022 lúc 20:46

AH^2+AB^2=AB^2

AC^2-BH^2=HC^2

Nguyễn Tân Vương
21 tháng 3 2022 lúc 20:49

undefined

\(\text{Xét }\Delta AHB\text{ vuông tại H có:}\)

\(AB^2=AH^2+BH^2\text{(định lí Py ta go)}\)

\(\Rightarrow AB^2=4^2+3^2=16+9=25\left(cm\right)\)

\(\Rightarrow AB=\sqrt{25\left(cm\right)}=5\left(cm\right)\)

\(\text{Xét }\Delta AHC\text{ có:}\)

\(AC^2=AH^2+HC^2\)

\(\Rightarrow HC^2=AC^2-AH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow HC^2=6^2-4^2=36-16=20\left(cm\right)\)

\(\Rightarrow HC=\sqrt{20}\left(cm\right)\)

Hoàng Ngọc
Xem chi tiết
Akai Haruma
9 tháng 10 2021 lúc 9:17

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

Akai Haruma
9 tháng 10 2021 lúc 9:19

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

Akai Haruma
9 tháng 10 2021 lúc 9:21

3. 

$BC=BH+CH=16a+9a=25a$

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH=16a.9a=(12a)^2$

$\Rightarrow AH=12a$ (do $a>0$)

$AB=\sqrt{BH^2+AH^2}=\sqrt{(16a)^2+(12a)^2}=20a$

$AC=\sqrt{CH^2+AH^2}=\sqrt{(9a)^2+(12a)^2}=15a$

 

Văn Thị Kim Thoa
Xem chi tiết
mình tên gì :)?
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 21:19

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Nguyễn Văn Đạt
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 22:23

A B C H

a)  ÁP dụng Pytago ta có:    AH2 + HB2 = AB2

                                       =>  AB2 = 62 + 4,52 =56,25

                                       =>  AB = 7,5

Áp dụng hệ thức lượng ta có:  AB2 = BH.BC

                                       =>  \(BC=\frac{AB^2}{BH}=12,5\)

=>   \(HC=BC-BH=12,5-4,5=8\)

Áp dụng hệ thức lượng ta có:

             \(AC^2=HC.BC\)

 =>   \(AC=\sqrt{HC.BC}=10\)

Không Tên
24 tháng 7 2018 lúc 22:27

b)  Áp dụng Pytago ta có:       AB2 = BH2 + AH2

                                          =>   AH2 = AB2 - BH2 = 27

                                          =>    \(AH=3\sqrt{3}\)

Áp dụng hệ thức lượng ta có:

     \(AH^2=BH.HC\)

=>  \(HC=\frac{AB^2}{BH}=12\)

=>  BC = HC + BH = 15

Áp dụng hệ thức lượng ta có:

       AC2 = HC.BC

=>  \(AC=\sqrt{HC.BC}=6\sqrt{5}\)

              

Dương Lam Hàng
24 tháng 7 2018 lúc 22:28

A B C H

a) Tam giác ABH vuông tại H, áp dụng định lý PyTago

Ta có: \(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5\) (Cm)

Tam giác ABC vuông tại A, áp dụng hệ thức: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{6^2}-\frac{1}{7,5^2}=\frac{1}{100}\)

\(\Rightarrow AC^2=100\Rightarrow AC=10\) (Cm)

Tam giác ABC vuông tại A, áp dụng định lý Pytago, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{7,5^2+10^2}=12,5\) (Cm)

\(HC=BC-BH=12,5-4,5=8\) (Cm)

b) Tam giác ABH vuông tại H, áp dụng định lý Pytago, ta có:

 \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\) (Cm)

Tam giác ABC vuông tại A, áp dụng hệ thức ta được:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{\left(3\sqrt{3}\right)^2}-\frac{1}{6^2}=\frac{1}{108}\)

\(\Rightarrow AC=\sqrt{108}=6\sqrt{3}\) (Cm)

Tam giác ACH vuông tại H, áp dụng định lý Pytago ta có:

\(CH=\sqrt{AC^2-AH^2}=\sqrt{\left(6\sqrt{3}\right)^2-\left(3\sqrt{3}\right)^2}=9\) (Cm)

nngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:39

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Son Goku
Xem chi tiết
Ngọc Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 15:34

1: Xét ΔABD vuông tại A và ΔHBI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔABD\(\sim\)ΔHBI

Suy ra: AB/HB=BD/BI

hay \(AB\cdot BI=BD\cdot BH\)

 

 

Trương Thị Trang Thư
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
21 tháng 6 2021 lúc 15:05

Xét tam giác ABH vuông tại H, ta có:

AH2 + BH2 = AB2

=> AH2 = 62 - 32 

=> AH = \(3\sqrt{3}\) (cm)

Có \(\widehat{BAH}=\widehat{BCA}\) (cùng phụ \(\widehat{HAC}\))

Xét \(\Delta CAH\) và \(\Delta ABH\) có:

+  \(\widehat{BCA}=\widehat{BAH}\) 

+ \(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

=>  \(\Delta CAH\) \(\sim\) \(\Delta ABH\) (g-g)

=> \(\dfrac{AC}{AH}=\dfrac{AB}{BH}\) => AC = \(6\sqrt{3}\) (cm)

Xét tam giác ABC vuông tại A có AH là đường cao

=> AB2 = BH.BC

=> 62 = 3.BC

=> BC = 12 (cm)

=> CH = 9 (cm)