Cho A=1/x+2 B=2x-5/x+2 Cho P=A.B,tìm x để P
cho a+b=2x-5 và a^2+b^2=2x^2+4x-1.Xác định x để a.b đạt GTNN, tìm giá trị đó
giúp mình với
\(a+b=2x-5\)
=>\(\left(a+b\right)^2=\left(2x-5\right)^2\)
=>\(a^2+b^2+2ab=4x^2-20x+25\)
=>\(2x^2+4x-1+2ab=4x^2-20x+25\)
=>\(2ab=2x^2-24x+26\)
=>\(ab=x^2-12x+13=x^2-12x+36-23=\left(x-6\right)^2-23\ge-23\).
\(ab\) đạt giá trị nhỏ nhất là -23 ⇔\(x-6=0\)⇔\(x=6\)
Cho A = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
a) Rút gọn A.
b) Tìm x để A > 0
\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(A=\dfrac{x+1+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}:\dfrac{1-2x}{x^2-1}\)
\(A=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(A=\dfrac{-2x+2}{1-2x}\)
\(A=0\)
⇔\(\dfrac{-2x+2}{1-2x}>0\)
⇔\(-2x+1>0\)
⇔\(-2x>-1\)
⇔\(x< \dfrac{1}{2}\)
Vậy x<\(\dfrac{1}{2}\) thì A>0
Cho A=2x+1/2x-1-2x-1/2x+1+4/1-x^2 và B=2x+1/x+2 với x khác 1/2;x khác -1/2;x khác 2;x khác -2
a)Rút gọn A
b)Tính giá trị của biểu thức Q=A.B tại x thỏa mãn lx-1l=3
c)Tìm các giá trị nguyên của x để biểu thức Q nhận giá trị nguyên
d)Tìm x để Q=-1
e)Tìm x để Q>0
Cho biểu thức A =\(\dfrac{x-2}{x+1}\)và B =\(\dfrac{3}{x-2}+\dfrac{6-5x}{4-x^2}+\dfrac{2x}{x+2}\)với x\(\ne\pm2\) x\(\ne-1\)
a,Tính giá trị của A khi x =1
b,Chứng minh B =\(\dfrac{2x}{x-2}\)
c,Đặt P =A.B .Tìm x để P\(\le\) 2
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
Cho 2 biểu thức:
A = x-2/x và B = 4x/x+1+x/1-x+2x/x^2-1
a) Tính giá trị biểu thức A khi x =2/3
b) Chứng minh : B =3x/x+1
c) Cho P=A.B Tìm tất cả các giá trị của m để Pt P=m có nghiệm duy nhất
a: Khi x=2/3 thì \(A=\dfrac{\dfrac{2}{3}-2}{\dfrac{2}{3}}=\dfrac{-4}{3}\cdot\dfrac{3}{2}=-2\)
b: \(B=\dfrac{4x}{x+1}-\dfrac{x}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x^2-4x-x^2-x+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x}{x+1}\)
Cho biểu thức: A=2x+20/x^2-25+1/x+5+2/x-5
a. Tìm điều kiện xác định của A.
b. Rút gọn biểu thức A.
c. Tính giá trị của biểu thức A khi x = 9.
d. Tìm x để A= –3
Cho biểu thức : A= \(\dfrac{1}{x-2}+\dfrac{x^2-2x}{x^2-4}+\dfrac{1}{2+x}\)
a) Rút gọn A.
b) Tính giá trị của biểu thức A tại x thoả mãn: 2x² + x = 0
c) Tìm x để A= \(\dfrac{-1}{3}\)
d) Tìm x nguyên để A nhận giá trị nguyên
a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)
Cho biểu thức : A= \(\dfrac{1}{x-2}+\dfrac{x^2-2x}{x^2-4}+\dfrac{1}{2+x}\)
a) Rút gọn A.
b) Tính giá trị của biểu thức A tại x thoả mãn: 2x² + x = 0
c) Tìm x để A= \(^{\dfrac{-1}{3}}\)
d) Tìm x nguyên để A nhận giá trị nguyên.
a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)