giải hệ phương trình
y^2-x^2=2
xy=-\(\sqrt{3}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x+\dfrac{2xy}{\sqrt[3]{x^2-2x+9}}=x^2+y\\y+\dfrac{2xy}{\sqrt[3]{y^2-2y+9}}=y^2+x\end{matrix}\right.\)
Mong mọi người giúp tôi giải hệ phương trình này:
\(\begin{cases}\sqrt{x^2+2y}+2y=\sqrt[3]{8y^3+4}+\left(x^2+2y-1\right)\sqrt{6x+4}\\\sqrt{y^2+1}+\sqrt{x-y}=2xy-x^2+\sqrt{x^2-2xy+y^2+1}+\sqrt{y}\end{cases}\)
\(\hept{\begin{cases}x+y=3\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{cases}}\)
Giải hệ phương trình
đk: \(x+2y\ge0\)
\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)
\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)
Giải phương trình, hệ phương trình:
a) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
b) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(b,\)\(ĐK:x\ge\frac{3}{2}\)
\(PT\Leftrightarrow x^2-4+5-\sqrt{6x^2+1}+\sqrt{2x-3}-1=0\)
\(\Leftrightarrow x^2-4+\frac{24-6x^2}{5+\sqrt{6x^2+1}}+\frac{2x-4}{\sqrt{2x-3}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{12+6x}{5+\sqrt{6x^2+1}}+\frac{2}{\sqrt{2x-3}+1}=0\right)\)
Xét ....
\(\Leftrightarrow x=2\left(tm\right)\)
Giải hệ phương trình sau \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
giải hệ phương trình sau \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Giải hệ phương trình:
\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\\x^3+2xy^2+x-2yx^2-4y^3-2y=0\end{cases}}\)
\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)ĐK:\(x\le12\)
Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)
\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)
Ta có hệ phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-2x^2y+x=y^3-2xy^2+y\\\sqrt{x-2}+\sqrt{4-x}=y^2-6x+11\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2+1\right)=0\)
Giải hệ phương trình: \(\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\\\sqrt{x^3+xy+6y}-\sqrt{y^3+x^2-1}=2\end{cases}}\)
:))
\(10x^2+5y^2-2xy-38x-6y+41=0\)
\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)
\(\Leftrightarrow x=2;y=1\)
Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?
Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)
Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)
Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình
KL: S={(2;1)}