Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trà
Xem chi tiết
Phạm Đắc Quyền
Xem chi tiết
nghiemminhphuong
Xem chi tiết
Phùng Minh Quân
3 tháng 6 2020 lúc 16:13

đk: \(x+2y\ge0\)

\(x+2y=\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+y^2}\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{\left(x+2y\right)^2}{4}}=x+2y\)

\(\Rightarrow\)\(x=2y\)\(\Rightarrow\)\(x=3-y=3-\frac{x}{2}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{x}{2}=1\end{cases}}\)

Khách vãng lai đã xóa
Ánh Dương
Xem chi tiết
Nguyễn Thị Ngọc Thơ
11 tháng 10 2019 lúc 22:20

\(b,\)\(ĐK:x\ge\frac{3}{2}\)

\(PT\Leftrightarrow x^2-4+5-\sqrt{6x^2+1}+\sqrt{2x-3}-1=0\)

\(\Leftrightarrow x^2-4+\frac{24-6x^2}{5+\sqrt{6x^2+1}}+\frac{2x-4}{\sqrt{2x-3}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{12+6x}{5+\sqrt{6x^2+1}}+\frac{2}{\sqrt{2x-3}+1}=0\right)\)

Xét ....

\(\Leftrightarrow x=2\left(tm\right)\)

Anh Đỗ Nguyễn Thu
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Vũ Ngọc Duy
Xem chi tiết
Thiên Thiên Chanyeol
20 tháng 12 2017 lúc 13:10

\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)ĐK:\(x\le12\)

Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)

\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)

Ta có hệ  phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)

Nguyen Thi Phuong Anh
19 tháng 12 2017 lúc 23:08

lop may vay

Tường Nguyễn Thế
Xem chi tiết
Lightning Farron
26 tháng 1 2018 lúc 19:19

\(pt\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2+1\right)=0\)

Kiệt Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
7 tháng 7 2020 lúc 19:25

:))

\(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow x=2;y=1\)

Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 7 2020 lúc 21:03

Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)

Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình

KL: S={(2;1)}

Khách vãng lai đã xóa