tính tổng M=\(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+....+\dfrac{260}{1400}\)
C= \(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{14}\)
Tính \(M=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(M=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(M=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+\dfrac{5}{10\cdot13}+...+\dfrac{5}{25\cdot28}\)
\(M=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{25\cdot28}\right)\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}\cdot\dfrac{3}{14}=\dfrac{5}{14}\)
Tính nhanh:
A=\(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...........+\dfrac{10}{1400}\)
\(A=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{140}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(3A=5\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-...-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=5\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=5.\dfrac{3}{14}=\dfrac{15}{14}\)
\(\Rightarrow A=\dfrac{15}{14}:3=\dfrac{15}{14}.\dfrac{1}{3}=\dfrac{5}{14}.\)
Vậy \(A=\dfrac{5}{14}.\)
rút gọn
B=\(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{14}\)
\(\Rightarrow B=\frac{3}{14}.\frac{5}{3}\)
\(\Rightarrow B=\frac{5}{14}\)
Vậy \(B=\frac{5}{14}\)
Tính giá trị của biểu thức \(D=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(D=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+....+\dfrac{5}{700}\)
\(=5\left(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+...+\dfrac{1}{700}\right)\)
\(=5\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{25.28}\right)\)
\(=5.\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}.\dfrac{3}{14}\)
\(=\dfrac{5}{14}\)
Cho 2 biểu thức D và E như sau
\(D=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(E=\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+24}\)
Tính \(\dfrac{D}{E}\)
\(D=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}.\dfrac{6}{28}=\dfrac{5}{14}\)
\(E=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{24.25}=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)=\dfrac{2.23}{50}=\dfrac{23}{25}.\)
\(\dfrac{D}{E}=\dfrac{5}{24}.\dfrac{25}{23}=\dfrac{125}{552}.\)
Tính tổng: M=10/56+10/140+10/260+...+10/1400
M=10/56+10/140+10/260+...+10/1400
=5/28+5/70+5/130+...+5/700
=5/4.7+5/7.10+5/10.13+...+5/25.28
=5/3(3/4.7+3/7.10+3/10.13+...+3/25.28)
=5/3(1/4-1/7+1/7-1/10+1/10-1/1+...+1/25-1/28)
=5/3.(1/4-1/28)
=5/3.3/14
=5/14
\(\frac{5}{14}\) Là đúng đó bn
nhớ k cho mình nha! hjhj
Câu 1: Tìm x,y \(\in\) x biết:
\(\dfrac{x-4}{y-3}=\dfrac{4}{3}\) và x-y=5
Câu 2: Tình:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
Câu 3: Tìm x biết
38 - ( |x+10|+13)=\(\left(-6\right)^{20}:\left(9^9.4^{10}\right)\)
Câu 1:
Ta có: \(\dfrac{x-4}{y-3}=\dfrac{4}{3}\)
=> \(3.\left(x-4\right)=4.\left(y-3\right)\)
=>\(3x-12=4y-12\)
=>\(3x=4y\) (1)
Ta có: \(x-y=5\)
=> \(y=y+5\) Thay vào (1) ta có:
\(3.\left(y+5\right)=4.\)y
=>\(3y+15=4y\)
=> \(15=4y-3y\)
=> 15 = y
=> y =15
ta có: x = y +5
=> x = 15 +5
=> x =20
Câu 2:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(B=\dfrac{5}{28}+\dfrac{6}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(B=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(B=5,\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(3B=5.\dfrac{3}{14}\)
\(B=\dfrac{15}{14}:3=\dfrac{5}{14}\)
Câu 3:
38 - (|x+10|+13) = \(\left(-6\right)^{20}:\left(9^9.4^{10}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\left(2.3\right)_{ }^{20}:\)\(\left[\left(3^2\right)^9.\left(2^2\right)^4\right]\)
=>\(38-\left(\left|x+10\right|+13\right)=2^{20}.3^{20}:\left(3^{18}.2^{20}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\dfrac{3^{20}.2^{20}}{3^{18}.2^{20}}\)
=> \(38-\left(\left|x+10\right|+13\right)=9\)
=> |x +10| + 13 = 38 -9
=> |x+10| +13 = 29
=> |x+10| = 29 -13
=> |x+10| = 16
\(\Rightarrow\left[{}\begin{matrix}x+10=16\\x+10=-16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-26\end{matrix}\right.\)
Câu 2:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+....+\dfrac{10}{1400}\)
\(\Rightarrow B=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+.....+\dfrac{20}{2800}\)
\(\Rightarrow B=20\left(\dfrac{1}{112}+\dfrac{1}{280}+\dfrac{1}{520}+...+\dfrac{1}{2800}\right)\)
\(\Rightarrow B=20\left(\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20.6}{6.56}\)
\(\Rightarrow B=\dfrac{20}{56}\)
\(\Rightarrow B=\dfrac{5}{14}\)
Tính tổng : 10/56 + 10/140 + 10/260...+10/1400
Đặt S= 5/28 + 5/70 + 5/130 +.....+5/700
= 5/4.7 + 5/7.10 + ......+ 5/ 25.28
3S/5=1/4-1/7+1/7-1/10+.....+1/25-1/28
3S/5=1/4-1/28
3S/5=3/14
3S=3/14x5
3S=15/14
S=15/14x1/3
S=15/42