Câu 1:
Ta có: \(\dfrac{x-4}{y-3}=\dfrac{4}{3}\)
=> \(3.\left(x-4\right)=4.\left(y-3\right)\)
=>\(3x-12=4y-12\)
=>\(3x=4y\) (1)
Ta có: \(x-y=5\)
=> \(y=y+5\) Thay vào (1) ta có:
\(3.\left(y+5\right)=4.\)y
=>\(3y+15=4y\)
=> \(15=4y-3y\)
=> 15 = y
=> y =15
ta có: x = y +5
=> x = 15 +5
=> x =20
Câu 2:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(B=\dfrac{5}{28}+\dfrac{6}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(B=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(B=5,\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(3B=5.\dfrac{3}{14}\)
\(B=\dfrac{15}{14}:3=\dfrac{5}{14}\)
Câu 3:
38 - (|x+10|+13) = \(\left(-6\right)^{20}:\left(9^9.4^{10}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\left(2.3\right)_{ }^{20}:\)\(\left[\left(3^2\right)^9.\left(2^2\right)^4\right]\)
=>\(38-\left(\left|x+10\right|+13\right)=2^{20}.3^{20}:\left(3^{18}.2^{20}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\dfrac{3^{20}.2^{20}}{3^{18}.2^{20}}\)
=> \(38-\left(\left|x+10\right|+13\right)=9\)
=> |x +10| + 13 = 38 -9
=> |x+10| +13 = 29
=> |x+10| = 29 -13
=> |x+10| = 16
\(\Rightarrow\left[{}\begin{matrix}x+10=16\\x+10=-16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-26\end{matrix}\right.\)
Câu 2:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+....+\dfrac{10}{1400}\)
\(\Rightarrow B=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+.....+\dfrac{20}{2800}\)
\(\Rightarrow B=20\left(\dfrac{1}{112}+\dfrac{1}{280}+\dfrac{1}{520}+...+\dfrac{1}{2800}\right)\)
\(\Rightarrow B=20\left(\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20}{6}\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(\Rightarrow B=\dfrac{20.6}{6.56}\)
\(\Rightarrow B=\dfrac{20}{56}\)
\(\Rightarrow B=\dfrac{5}{14}\)
Câu 2: Tình:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(B=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(B=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(B=3.5\left(\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(B=15\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(B=15.\dfrac{3}{14}\)
\(B=\dfrac{45}{14}\)
Câu 1:
\(\dfrac{x-4}{y-3}=\dfrac{4}{3}\)
\(\Rightarrow3\left(x-4\right)=4\left(y-3\right)\)
\(\Rightarrow3x-12=4y-12\)
\(\Rightarrow3x=4y\left(1\right)\)
Vì x - y = 5
\(\Rightarrow x=y+5\)
Thay \(x=y+5\) vào \(\left(1\right)\)
\(\Rightarrow3\left(y+5\right)=4y\)
\(\Rightarrow3y+15=4y\)
\(\Rightarrow15=4y-3y\)
\(\Rightarrow y=15\)
\(\Rightarrow x=20\)
Vậy \(\left\{{}\begin{matrix}x=20\\y=15\end{matrix}\right.\) thì thỏa mãn điều kiện bài toán