Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Valentine

1. Tìm x biết:

a) \(\left(-x-\dfrac{1}{9}\right)^2=\dfrac{4}{9}\)

b) \(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)

Lightning Farron
16 tháng 4 2017 lúc 17:23

a)\(\left(-x-\dfrac{1}{9}\right)^2=\dfrac{4}{9}\)

\(\Rightarrow\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2\)

\(\Rightarrow-x-\dfrac{1}{9}=\dfrac{2}{3}\Rightarrow-x=\dfrac{7}{9}\Rightarrow x=-\dfrac{7}{9}\)

*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

\(\Rightarrow-x-\dfrac{1}{9}=-\dfrac{2}{3}\Rightarrow-x=-\dfrac{5}{9}\Rightarrow x=\dfrac{5}{9}\)

b)\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=1\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)

\(\Rightarrow2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1991}{1993}\)

\(\Rightarrow\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1991}{3986}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1993}\)

\(\Rightarrow x+1=1993\Rightarrow x=1992\)


Các câu hỏi tương tự
nguyen thi quynh
Xem chi tiết
Monkey D .Luffy
Xem chi tiết
Đỗ Thị Huyền Trang
Xem chi tiết
nguyen thi quynh
Xem chi tiết
Nguyễn Hoàng Vũ
Xem chi tiết
Nguyễn Hoàng Vũ
Xem chi tiết
Walker Trang
Xem chi tiết
Lê Thị Ngọc Duyên
Xem chi tiết
Đông Phương Vô Hàn
Xem chi tiết