Tìm x, biết:
1. \(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\)
2. x. ( x + 1) = 0
3. 2x - 16 = 40 + x
4. x : \(\dfrac{5}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{-2}{5}\)
5. 3\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) x = \(\dfrac{2}{3}\)
6. \(\dfrac{x}{4}=\dfrac{9}{x}\)
7. \(\dfrac{1}{3}+\dfrac{1}{2}:x=\) -0,25
6. \(\dfrac{x}{4}=\dfrac{9}{x}\)
=>x2=4.9=36
=>x\(\in\)\(\left\{-6;6\right\}\)
\((\dfrac{2x}{5}+2):\left(-4\right)=-1\dfrac{1}{2}\)
(\(\dfrac{2x}{5}+2):\left(-4\right)=-\dfrac{3}{2}\)
\(\dfrac{2x}{5}=-\dfrac{3}{2}.\left(-4\right)\)
\(\dfrac{2x}{5}=6\)
\(\dfrac{2x}{5}=\dfrac{30}{5}\)
2x = 30
x = 30 : 2 = 15
x.(x+1) = 0
⇒ \(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=0\\x=0-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)\(2x-16=40+x\)
\(2x-x=40+16\)
\(x=56\)
4)x : \(\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{3}\)
x : \(\dfrac{5}{3}=-\dfrac{2}{3}-\dfrac{1}{3}\)
x : \(\dfrac{5}{3}=-1\)
x : \(=-1\times\dfrac{5}{3}\)
x : \(=-\dfrac{5}{3}\)
5)3\(\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(\dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(\dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\)
\(\dfrac{1}{2}x=\dfrac{17}{6}\)
\(x=\dfrac{17}{6}:\dfrac{1}{2}\)
\(x=\dfrac{17}{3}\)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\)
\(\dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\)
\(\dfrac{1}{2}:x=\dfrac{-7}{12}\)
\(x=\dfrac{1}{2}:-\dfrac{7}{12}\)
\(x=-\dfrac{6}{7}\)