b) \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
mik lỡ bấm nhầm rồi, phần sau bn tự nghĩ nhé, sorry
b)\(\dfrac{2}{6}\)+\(\dfrac{2}{12}\)+.......+\(\dfrac{2}{x.\left(x+1\right)}\)=\(\dfrac{499}{1000}\)
\(\dfrac{2}{2.3}\)+\(\dfrac{2}{3.4}\)+.........+\(\dfrac{2}{x.\left(x+1\right)}\)=\(\dfrac{499}{1000}\)
2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.........+\(\dfrac{1}{x.\left(x+1\right)}\))=\(\dfrac{499}{1000}\)
2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-..........+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\))=\(\dfrac{499}{1000}\)
2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))=\(\dfrac{499}{1000}\)
\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{499}{1000}\):2
\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{499}{2000}\)
\(\dfrac{1}{x+1}\)=\(\dfrac{1}{2}\)-\(\dfrac{499}{2000}\)
\(\dfrac{1}{x+1}\)=\(\dfrac{501}{2000}\)
Đề bài sai phải