cho tam giác abc có hai đường trung tuyến BM=CN.C/m abc cân
Cho tam giác ABC có đường trung tuyến BM bằng đường trung tuyến CN. Chứng minh rằng tam giác ABC cân.
Tham khảo:
Gọi D là giao điểm của CN và BM
\( \Rightarrow \) D là trọng tâm tam giác ABC
\( \Rightarrow CD = \dfrac{2}{3}CN = BD = \dfrac{2}{3}BM\) ( do BM = CN )
\( \Rightarrow \) tam giác DBC cân tại D do BD = CD
\( \Rightarrow \) \(\widehat {DBC} = \widehat {DCB}\)(2 góc đáy trong tam giác cân) (1)
Xét \(\Delta NDB\) và \(\Delta MDC\) có :
BD = CD
\(\widehat {NDB} = \widehat {MDC}\) (2 góc đối đỉnh)
ND = DM (do cùng \( = \dfrac{1}{3}CN = \dfrac{1}{3}BM\) (tính chất của trung trực đi qua trọng tâm tam giác ))
\( \Rightarrow \Delta NDB=\Delta MDC\) (c.g.c)
\( \Rightarrow \,\widehat {NBD} = \widehat {MCD}\)(2 góc tương ứng) (2)
Từ (1) và (2) \( \Rightarrow \widehat {ABC} = \widehat {ACB}\) do \(\widehat {ABC} = \widehat {NBD} + \widehat {DBC}\) và \(\widehat {ACB} = \widehat {MCD} + \widehat {DCB}\)
\( \Rightarrow \Delta ABC\) cân tại A (do 2 góc bằng nhau)
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứng minh rằng tam giác ABC cân
Xét đường tròn (O) có: AM và AN là 2 tiếp tuyến cắt nhau tại A (gt)
\(\Rightarrow\) AM = AN (t/c 2 tiếp tuyến cắt nhau)
Mà AM = \(\dfrac{1}{2}\)AC; AN = \(\dfrac{1}{2}\)AB
\(\Rightarrow\) AB = AC
Xét tam giác ABC có: AB = AC (cmt)
\(\Rightarrow\) tam giác ABC cân tại A (đ/lí tam giác cân)
Chúc bn học tốt!
Cho tam giác ABC có hai đường trung tuyến BM, CN.
a) Chứng minh nếu tam giác ABC cân tại A thì BM = CN.
b) Ngược lại nếu BM = CN, chứng minh:
i) GB = GC, GN = GM;
ii) BN = CM;
iii) tam giác ABC cân tại A.
Cho tam giác ABC có 2 đường trung tuyến BM, CN cắt nahu tại điểm G.
a, C/m nếu tam giác ABC cân tại A thì BM = CN.
b, Ngược lại nếu BM = CN , c/m:
i,GB = GC, GN = GM;
ii, BN = CM
iii, Tam giác ABC cân tại A
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN. Chứng minh rằng BM=CN
Xét △AMB và △ANC ta có:
AM=AN ( Vì M,N lần lượt là trung điểm của 2 cạnh AB, AC)
\(\widehat{A}\) là góc chung
AB=AC (Vì là hai cạnh bên trong tam giác cân)
\(\Rightarrow\Delta AMB=\Delta ANC\left(c-g-c\right)\)
\(\Rightarrow BM=CN\) (hai cạnh tương ứng)
Xét ΔAMB và ΔANC có
AM=AN
góc A chug
AB=AC
=>ΔAMB=ΔANC
=>BM=CN
Cho tam giác ABC cân tại A có đường trung tuyến BM và đường cao AH bằng nhau. Chứng minh tam giác ABC đều.
cho tam giác abc có hai đường trung tuyến bm và cn nếu bm=cn thì tam giác abc là tam giác gì
Do \(BM\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AM=CM\)
Và \(CN\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AN=BN\)
Mà \(BM=CN\left(gt\right)\)
Từ đó suy ra: \(AM=CM=AN=BN\)
Ta lại có: \(AM+CM=AC\)
Và \(AN+BN=AB\)
Nên: \(AM=CM=AN=BN\)
\(\Rightarrow AM+CM=AN+BN\)
\(\Rightarrow AC=AB\)
Vậy \(\Delta ABC\) có \(AC=AB\) là tam giác cân tại \(A\)
Cho tam giác ABC cân tai A có AH là đường trung tuyến ứng với cạnh BC A)chứng minh tâm giác AHB=tam giác AHC B)kẻ các đường trung tuyến BM và CN .Gọi G là trọng tâm của tam giác ABC Chứng minh tam giác GBC là tam giác cân C)qua C kẻ đường thẳng vuông góc với BC cắt đường thẳng BM tại từ G kẻ đường thẳng song song với BC. Chứng minh BC=2×GD
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
Cho tam giác ABC cân ở A có hai đường trung tuyến BM và CN
Chứng minh MN // BE
MN//BC chứ, làm gì có E -_-