Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Ngọc
Xem chi tiết
Nguyễn acc 2
9 tháng 5 2022 lúc 5:15

`2x-15=-25`

`2x=-10`

`x=-5`

___________

`3/5<x/10<4/5`

`3/5=(3xx10)/(5xx10)=30/50`

`x/10=(5x)/(10xx5)=(5x)/50`

`4/5=(4xx10)/(5xx10)=40/50`

`=>30/50<(5x)/50<40/50`

`=>30<5x<40`

`=>x=7`

nga nguyen
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 9 2020 lúc 20:12

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

=> x + 2020 = 0

=> x = -2020

Khách vãng lai đã xóa
Bellion
17 tháng 9 2020 lúc 20:15

            Bài làm :

Ta có :

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

 \(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy x=-2020

Khách vãng lai đã xóa
Ngô Chi Lan
11 tháng 3 2021 lúc 13:15

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Khách vãng lai đã xóa
Ngô Hiểu Phong
Xem chi tiết
Dang Tung
19 tháng 8 2023 lúc 15:15

\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)

Vũ Quang Minh
19 tháng 8 2023 lúc 15:18

đáp án B bạn nha 

chau tran
Xem chi tiết
iamRinz
5 tháng 1 2023 lúc 20:21

\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

Sahara
5 tháng 1 2023 lúc 20:20

Tham khảo câu trả lời:

chuche
5 tháng 1 2023 lúc 20:22

`(x+1)/2023+(x+2)/2022=(x+3)/2021+(x+4)/2020`

`=>(x+1)/2023+1+(x+2)/2022+1=(x+3)/2021+1+(x+4)/2020+1`

`=>(x+2024)/2023+(x+2024)/2022=(x+2024)/2021+(x+2024)/2020`

`=>(x+2024)/2023+(x+2024)/2022-(x+2024)/2021-(x+2024)/2020=0`

`=>(x+2024).(1/2023+1/2022-1/2021-1/2020)=0`

Vì `1/2023+1/2022-1/2021-1/2020` `\ne` `0`

`=> x+2024=0`

`=>x=-2024`

23 Đỗ Thị Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 20:28

=>\(\left(\dfrac{2-x}{2021}-1\right)=\left(\dfrac{1-x}{2022}-1\right)+\left(1-\dfrac{x}{2023}\right)\)

=>2023-x=0

=>x=2023

Minh Ngọc
Xem chi tiết
Hồ Kim Ngọc
16 tháng 4 2023 lúc 10:02

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

chi le
Xem chi tiết
Siêu Quậy Quỳnh
23 tháng 5 2017 lúc 15:07

Mình không viết lại đề bài nha

a) \(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\Rightarrow x=305\)

chi le
27 tháng 5 2017 lúc 7:39

Tìm x,y thuộc Z biết:

a, \(2^{x+y}=2^x+2^y\)

b, \(x+y=x.y=x:y\left(y\ne0\right)\)

Làm nhanh giùm mình nhé!!!!!

TRẦN PHƯỚC AN
Xem chi tiết
Nhất Tâm
7 tháng 9 lúc 0:03

Đây nhé bé

Câu1

\(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).

Suy ra:

\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)

Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).

\(\Rightarrow\) Giá trị nhỏ nhất của \(A\)\(\boxed{2024}\), đạt tại \(x = 0\).

Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )

Đặt \(n = 2022\). Khi đó:

\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)

Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).

Ta gọi k là luỹ thừa của cơ số

\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)

Xét hiệu:

\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)

Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)

Do đó:

\(A = a_{2022} < a_{2021} = B .\)

\(\Rightarrow B>A\)

Câu3

Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).

\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)

Vậy kết quả bằng \(\frac{5}{3}\).

Câu 3:

\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)

\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)

\(=\frac53\)

Câu 2:

\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)

\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)

Ta có: \(2022^{2023}+1>2022^{2022}+1\)

=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)

=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)

=>2022A<2022B

=>A<B

Câu 1:

\(\left|x\right|\ge0\forall x\)

=>\(\left|x\right|+1\ge1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)

Dấu '=' xảy ra khi x=0

Bài 2:

A = \(\frac{2022^{2022}+1}{2022^{2023}+1}\)

A = \(\frac{2022^{2022}+1}{2022^{2023}+1}\) < \(\frac{2022^{2022}+1+2021}{2022^{2023}+1+2021}\)

A < \(\frac{2022^{2022}+\left(1+2021\right)}{2022^{2023}+\left(1+2021\right)}\)

A < \(\frac{2022^{2022}+2022}{2022^{2023}+2022}\)

A < \(\) \(\frac{2022.\left(2022^{2021}+1\right)}{2022.\left(2022^{2022}+1\right)}\)

A < \(\frac{2022^{2021}+1}{2022^{2022}+1}\) = B

Vậy A < B

Hướng Hồng Ngân
Xem chi tiết
Phan Thị Dung
11 tháng 4 2023 lúc 23:34

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.