Tìm tất cả các số nguyên p để p^2 +80 là số nguyên tố
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số nguyên tố p sao cho p+11 cũng là số nguyên tố
Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là số nguyên tố
Nhanh gúup mình nhé mình đang cần gấp
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!
tìm tất cả các số nguyên tố p để p^2+2^p là số nguyên tố
tìm tất cả các số nguyên tố p để 2^p + p^2 cũng là số nguyên tố
p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa. Xét p=3 thõa mãn
Tìm tất cả các số nguyên tố P để a = P^2+8 là số nguyên tố
p là số nguyên tố
xét p=2 loại tự làm
xét p=3 chọn tự làm
xét p=3k+1 hoặc p= 3k+2
p=3k+1=> p^2+8= (3k+1)^2+8= 9k^2+6k+9 chia hết cho 3
p=3k+2=> p^2+8= (3k+2)^2+8= 9k^2+12k+12 chia hết cho 3
nên từ đó suy ra p=3 là thoả đề
Tìm tất cả các số nguyên tố p để 2^p + p^2 cũng là số nguyên tố
p không tìm được đâu , 2 mũ mấy cũng không là số nguyên tố đâu
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
Tìm tất cả các số nguyên tố P để a=P^2 +8 là số nguyên tố
(+) Với p = 2
=> a = 22 + 8 = 14 ( hợp số )
(+) Với p = 3
=> a = 32+8 = 17 ( số nguên tố )
(+) Với p > 3
Vì p nguyên tố
=> p = 3k+1 ; p = 3k + 2\(\left(k\in N\right)\)
Mặt khác : p2 là số chính phương . Mà p không chia hết cho 3
=> p2 chia 3 dư 1
=> p2=3m+1\(\left(m\in N\right)\)
=> p2+8=3m+1+8=3m+9 ( hợp số )
Vậy p = 3
Ta có:
Gía trị của P | Gía trị của a khi thay P (a= P2+8) | Kết quả nhận/loại |
2 | 12 | Hợp số-> Loại |
3 | 17 | Số nguyên tố-> Nhận |
5 | 33 | Hợp số-> Loại |
7 | 57 | Hợp số -> Loại |
11 | 129 | Hợp số-> Loại |
Cứ thử như thế cho đến mãi ta mới chỉ nhận được một giá trị : P=3
=> Vậy: P=3
tìm tất cả các số nguyên tố p để 4p^2+1 và 6p^2+1 là số nguyên tố
Tìm tất cả các số nguyên tố P để p2+2P là số nguyên tố
Với p = 2 ta có p2 + 2p = 12 không là số nguyên tố
Với p = 2 ta có p2 + 2p = 17 là nguyên tố
Với p > 3 ta có p2 + 2p = ( p2 - 1) + ( 2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 - 1 chia hết cho 3 và 2p + 1 chia hết cho 3 . Do đó p2 + 2p là hợp số
Vậy với p 3 thì p2 + 2p là số nguyên tố
Học vui vẻ ^_^