Giải phương trình sau:
(𝑥 ^2 − 2𝑥) ^2 + |𝑥 ^2 − 2𝑥| − 2 = 0
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
Bài 3:
a. $x^2+2x=x(x+2)$
b. $x^2-6x+9=x^2-2.3x+3^2=(x-3)^2$
c. $5(x-y)-y(y-x)=5(x-y)+y(x-y)=(x-y)(5+y)$
d. $2x-y^2+2xy-y=(2x-y)+(2xy-y^2)=(2x-y)-y(2x-y)=(2x-y)(1-y)$
e.
$6x^3y^4+12x^2y^3-18x^3y^2=6x^2y^2(xy^2+2y-3x)$
8: Giải phương trình (𝑥 + 1)√𝑥 2 − 2𝑥 + 3 = 𝑥 2 + 1 . Tính tổng bình phương các nghiệm A. 6 B. 3 + √8 C. 8 D. 4 + √12
a) 2𝑥(𝑥2−9)=0
b) 2𝑥(𝑥−2021)−𝑥+2021=0
c) 4𝑥2−16𝑥=0
d) (3𝑥+7)2−(𝑥+1)2=0
\(a,\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Leftrightarrow\left(2x-1\right)\left(x-2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2021\end{matrix}\right.\\ c,\Leftrightarrow4x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ d,\Leftrightarrow\left(3x+7-x-1\right)\left(3x+7+x+1\right)=0\\ \Leftrightarrow\left(2x+6\right)\left(4x+8\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
1) (𝑥 + 7)2 − 𝑥(𝑥 − 3) = 15 2) (2𝑥 + 3)2 − 4𝑥(𝑥 + 2) = 13 3) (3 − 𝑥)2 − (𝑥 − 2)(𝑥 + 1) = 21 4) (𝑥 − 2)2 − (𝑥 + 1)(𝑥 + 3) = −7 5) (𝑥 + 3)(4 − 𝑥) + (𝑥 + 1)(𝑥 − 1) = 10 6) (𝑥 + 1)2 − (𝑥 − 2)(𝑥 + 2) = 13 7) (5𝑥 − 1)(5𝑥 + 1) = 25𝑥2 − 7𝑥 + 15 8) (2𝑥 − 3)2 = 4(𝑥 − 3)(𝑥 + 3) − 4 . Số 2 ở sau là mũ 2 nhé, giải giúp mình vs
???????????????????????
Bài 10. Cho phương trình: 𝑥^ 4 − 2𝑥^2 + 𝑚 − 2 = 0 (1)
1. Giải phương trình khi m = −1.
2. Tìm m để phương trình (1) có 4 nghiệm phân biệt.
1.Thay m=-1 vào pt ta được:
\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)
Vậy...
2.Đặt \(t=x^2\left(t\ge0\right)\)
Với mỗi t>0 thì sẽ luôn có hai x phân biệt
Pttt: \(t^2-2t+m-2=0\) (2)
Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)
Vậy...
1. Bạn tự giải
2. Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-2t+m-2=0\) (2)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)
\(\Rightarrow2< m< 3\)
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
1) (-2) ⋮ (𝑥 + 1)
2) (2𝑥 + 7) ⋮ (𝑥 + 3)
3) (2𝑥 - 5) ⋮ (𝑥 - 1)
4) (𝑥 + 4) ⋮ (𝑥 + 1)
SOS cần gấp!! làm giúp mình với
1)(x+1)thuộc ước của -2
ư(2)={1;2;-1;-2}
x+1 | 1 | 2 | -1 | -2 |
x | 0 | 1 | -2 | -3 |
vậy x =0;x=1;x=-2;x=-3
2)ta có : 2x+7=2(x+3)+1
2(x+3)chia hết cho x+3
=>để 2x+7chia hết cho x+3
<=>1chia hết cho x+3
=>x+3 thuộc ư(1)
u(1)={1;-1}
x+3 | 1 | -1 |
2 | -2 | -4 |
vậy x=-2;x=-4
𝑎)2𝑥−1𝑥−3+4=−1𝑥−3
⇔2x-1x+1x=-3+3-4
⇔2x=-4
⇔x=-2
𝑏)3𝑥−22𝑥+5=6𝑥+14𝑥−3
⇔5+3=6x+14x-3x+22x
⇔8=39x
⇔x=\(\frac{8}{39}\)
𝑐)𝑥+3𝑥+1+𝑥−2𝑥=2
⇔x+3x+x-2x=2-1
⇔3x=1
⇔x=\(\frac{1}{3}\)
𝑑)x+1−2𝑥−3𝑥−1=2𝑥+3𝑥2−1
⇔3x2+2x+2x+3x-x-1-1+1=0
⇔3x2+6x-1=0
⇔3x2+3x+3x+3-4=0
⇔3x(x+1)+3(x+1)-4=0
⇔3(x+1)(x+1)-4=0
⇔3(x+1)2-4=0
⇔(x+1)2=\(\frac{4}{3}\)
⇔\(\left[{}\begin{matrix}x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}-1\\x=-\frac{4}{3}-1\end{matrix}\right.\)
Vậy ...
a, 2x - x - 3 + 4 = -x - 3
\(\Leftrightarrow\) x + 1 = -x - 3
\(\Leftrightarrow\) x + x = -3 - 1
\(\Leftrightarrow\) 2x = -4
\(\Leftrightarrow\) x = -2
Vậy S = {-2}
b, 3x - 22x + 5 = 6x + 14x - 3
\(\Leftrightarrow\) -19x + 5 = 20x - 3
\(\Leftrightarrow\) -19x - 20x = -3 - 5
\(\Leftrightarrow\) -39x = -8
\(\Leftrightarrow\) x = \(\frac{8}{39}\)
Vậy S = {\(\frac{8}{39}\)}
c, x + 3x + 1 + x - 2x = 2
\(\Leftrightarrow\) 3x + 1 = 2
\(\Leftrightarrow\) 3x = 2 - 1
\(\Leftrightarrow\) 3x = 1
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Phần d mình ko hiểu, bạn viết rõ được ko!
Chúc bn học tốt!!
d, x + 1 - 2x - 3x - 1 = 2x + 3x2 - 1
\(\Leftrightarrow\) x + 1 - 2x - 3x - 1 - 2x - 3x2 + 1 = 0
\(\Leftrightarrow\) -3x2 - 6x + 1 = 0
\(\Leftrightarrow\) -(3x2 + 6x - 1) = 0
\(\Leftrightarrow\) 3x2 + 6x - 1 = 0
\(\Leftrightarrow\) 3x2 + 3x + 3x + 3 - 4 = 0
\(\Leftrightarrow\) 3x(x + 1) + 3(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)2 - 4 = 0
\(\Leftrightarrow\) (x + 1)2 = \(\frac{4}{3}\)
\(\Leftrightarrow\) x + 1 = \(\sqrt{\frac{4}{3}}\) hoặc x + 1 = \(-\sqrt{\frac{4}{3}}\)
\(\Leftrightarrow\) x = \(\sqrt{\frac{4}{3}}\) - 1 và x = \(-\sqrt{\frac{4}{3}}\) - 1
\(\Leftrightarrow\) x = \(\frac{2\sqrt{3}-3}{3}\) và x = \(\frac{-2\sqrt{3}-3}{3}\)
Vậy S = {\(\frac{2\sqrt{3}-3}{3}\); \(\frac{-2\sqrt{3}-3}{3}\)}
Chúc bn học tốt!!