Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Bé Mùa Đông
Xem chi tiết
Nguyễn Hoàng Loan
25 tháng 1 2016 lúc 22:26

HB=HC

AH CẠNH CHUNG

AB=AC (CẠNH HUYỀN)

DO ĐÓ:AHB=AHC (C-C-C)

MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!

Quỳnh Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:28

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: BH=CH=12/2=6cm

AH=căn 10^2-6^2=8cm

 

Huong Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 21:57

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A

Nguyễn Hà Trang
Xem chi tiết
Linh Chi
Xem chi tiết
Ngoc Han ♪
26 tháng 6 2020 lúc 16:15

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
26 tháng 6 2020 lúc 16:31

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

Khách vãng lai đã xóa
Trang
26 tháng 6 2020 lúc 16:33

A B C H M

a. Xét hai tam giác vuông AHB và tam giác vuông AHC có 

                \(\widehat{AHB}=\widehat{AHC}=90^O\)

               Cạnh AH chung 

               AB = AC [ vì tam giác ABC cân tại A ]

Do đó ; tam giác AHB = tam giác AHC [ cạnh huyền - cạnh góc vuông ]

b.Theo câu a ; tam giác AHB = tam giác AHC 

\(\Rightarrow\)HB = HC =\(\frac{BC}{2}=\frac{8}{2}=4cm\)

Áp dụng định lí Py-ta-go vào tam giác vuông AHB có 

 \(AB^2=AH^2+HB^2\)

\(\Rightarrow AH^2=AB^2-HB^2\)

\(\Rightarrow AH^2=5^2-4^2\)

\(\Rightarrow AH^2=9\)

\(\Rightarrow AH=3cm\)

c.Xét hai tam giác vuông AHB và tam giác vuông MHB có 

            \(\widehat{AHB}=\widehat{MHB}=90^O\) 

           Cạnh HB chung

            HA = HM [ gt ]

Do đó ; tam giác AHB = tam giác MHB [ cạnh góc vuông - cạnh góc vuông ]

\(\Rightarrow\)AB = MB [ cạnh tương ứng ]

Vậy tam giác ABM là tam giác cân tại B 

d.Vì tam giác ABM cân tại B nên góc BAM = góc BAM [ 1 ]

Theo câu a ; tam giác AHB = tam giác AHC 

\(\Rightarrow\)góc HAB = góc HAC hay góc MAB = góc MAC [ 2 ]

Từ [ 1 ] và [ 2 ] suy ra ; góc BMA = góc CAM [ ở vị trí so le trong ]

Vậy BM // AC

Học tốt

Khách vãng lai đã xóa
iNfinitylove
Xem chi tiết
Nguyễn Viết Gia Vỹ
Xem chi tiết

a, Xét ∆ ABH và ∆AHC có:

+AH chung

+ ∠AHB= ∠AHC(=90*)

+AB=AC(△ ABC cân)

=> △AHB=△AHC(ch-cgv)

=>BH=HC(2 cạnh tương ứng)

b) Xét △ HEB và △HFC có:

+ ∠BEH= ∠CFH(=90*)

+HB=HC(cmt)

+ ∠B= ∠C(△ABC cân)

=> △HEB=△HFC(ch-cgnhon)

 

Quốc Anh
Xem chi tiết
Thuỳ Linh Nguyễn
16 tháng 3 2023 lúc 19:35

Bn xem lại câu d nhé 

`a)`

Có `Delta ABC` cân tại `A`

`=>hat(B)=hat(C)=(180^0-hat(BAC))/2`

hay `hat(B)=hat(C)=(180^0-50^0)/2`

`=>hat(B)=hat(C)=130^0/2=65^0`

`b)`

Có `H` là tđ `BC(GT)=>BH=HC`

Xét `Delta ABH` và `Delta ACH` có :

`{:(AB=AC(GT)),(AH-chung),(BH=CH(cmt)):}}`

`=>Delta ABH=Delta ACH(c.c.c)(đpcm)`

`c)`

Có `AB=AC=>A in` trung trực của `BC`(1)

`BH=CH=>H in` trung trực của `BC`(2)

Từ (1) và (2)`=>AH` là trung trực của `BC`

`=>AH⊥BC(đpcm)`

ミ★ΉảI ĐăПG 7.12★彡
Xem chi tiết
Thanh Hoàng Thanh
18 tháng 4 2021 lúc 18:06

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)

=> AH là đường trung tuyến (TC tam giác cân)

=> H à TĐ của BC 

=> BH = HC 

Xét tam giác AHB và tam giác AHC:

BH = HC (cmt)

^AHB = ^AHC (90o)

AH chung

=> tam giác AHB = tam giác AHC (ch - cgv)

b) Ta có: HA = HD (gt) => H là TĐ của AD

Xét tam giác ACD có:

CH là đường cao (CH vuông góc AD)

CH là trung tuyến (H là TĐ của AD)

=> tam giác ACD cân tại C

c) Xét tam giác ACD cân tại A có:

AD > AC + CD (Bất đẳng thức trong tam giác)

=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)

Mà  \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)

=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)

Thanh Hoàng Thanh
18 tháng 4 2021 lúc 22:07

A B C H D