1/32 + 1/42 + 1/52 + .......+1/802.Và so sánh với 1/4
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
BÀI 1: So sánh mà ko tính giá trị của biểu thức
a) 4 336 và 3 448
b) 5 300 và 3 750
Bài 2
a) 12+ 22 + 32 + 42+52 và (1+2+3+4+5)2
b) 13+ 23+33 +43 và (1+2+3+4)3
c) 16 . 5200 và 5202
d) 18 . 4500 và 21004
e) 2022 . 2023 2024 + 20232024 và 20232025
Bài 1 So sánh
A= 40+ 3/8 + 7/8^2 + 5/8^3 + 32/8^5
B= 24/8^2 + 40 + 5/8^2 + 40/8^4 + 5/8^4
Bài 2 So sánh
a, 1.3.5.7...99 và 51/2 . 52/2 .... 100/2
b, A= 1+1/2 + 1/3 + 1/4 + ...... + 1/64 và 4
CMR 1/32+1/42+1/52+...+1/602<4/9
Sửa đề: CM A>4/9
A=1/3^2+1/4^2+...+1/60^2
=>A>1/3*4+1/4*5+...+1/60*61
=>A>1/3-1/61=58/183>4/9
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
A= 1/51+1/52+1/53+...+1/99+1/100. so sánh với 1/2 và 1
so sánh
a ) 1 2 − 7 4 v à − 1 ; b ) 1 2 − − 7 4 + 13 8 v à 2 ; c ) 5 2 − 1 14 v à 3 2 − 6 7 ; d ) 3 4 + 7 − 15 − − 5 6 v à 7 10 − 2 15 .
a ) − 5 4 < − 1. b ) 31 8 > 2. c ) 9 14 < 17 7 . d ) 67 60 > 1 10
1. Tìm x, y ∈ N biết
a) 19 - (x + 23) = 24 - 6
b) 43 + 32 : (x + 1) - 65
c) (2x + 1)3 - 52 = 102
d) 15 . 2x - 7 . 2 +x-2 = 212
e) 1 + 3 + 32 + .... + 3x = 314
g) 2x - 2y = 7
2. a) So sánh 2150 và 3100
b) Tìm chữ số tận cùng của A = 22023 + 32024
a)19 - (x + 23)=24- 6
19 - (x + 23) = 16 - 6
19 - (x + 23) = 10
(x + 23) = 19 - 10
x + 23= 9
x + 23 = 33
x + 2 = 3
x= 3-2
x= 1
sửa lại :
a)19 - (x + 23)=24- 6
19 - (x + 23) = 16 - 6
19 - (x + 23) = 10
(x + 23) = 19 - 10
x + 23= 9
=> x + 8= 9 x= 1
=> x + 8 =-9 x= -17