\(\left(2x-x^2\right)3\left(x^2+3x+1\right)\)
giải hộ em vs ạ
\(\left(x^2-3x+1\right)\left(x^2-3x+2\right)=2\)
Giải hộ em ạ
=>(x^2-3x)^2+3(x^2-3x)+2=2
=>(x^2-3x)(x^2-3x+3)=0
=>x^2-3x=0
=>x=0 hoặc x=3
dạng 1: thực hiện phép tính :
a,\(12a^2b\left(a-b\right)\left(a+b\right)\)
b,\(\left(2x^2-3x+5\right)\left(x^2-8x+2\right)\)
DẠNG 2: TÌM x
a,\(\frac{1}{4}x^2-\left(\frac{1}{2}x-4\right)\frac{1}{2}x=-14\)
b,\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)=27\)
LÀM ĐƯỢC CÂU NÀO THÌ GIẢI HỘ VS Ạ
a) = \(12a^2b\left(a^2-b^2\right)\)
= \(12a^4b-12a^2b^3\)
b)nhân ra :
= \(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)
= \(2x^4-19x^3+33x^2-46x+10\)
Tìm x:
a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)
= \(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)
=\(2x=-14=>x=-7\)
b) \(x^3+27-x\left(x^2-1\right)=27\)
= \(x^3+27-x^3+x=27\)
= \(27+x=27=>x=0\)
Cho hàm số \(\int\left(x\right)=\left\{{}\begin{matrix}2x-3\left(1\right)\\\dfrac{3}{x-1}\left(2\right)\end{matrix}\right.\)
(1) khi x > 3 ; (2) khi x ≤ 3 Tính \(\int\left(4\right)\)
Giải thích hộ giùm em lun ạ . Cảm ơn nhiều
Khi \(x=4>3\Rightarrow f\left(x\right)=2x-3\)
\(\Rightarrow f\left(4\right)=2.4-3=5\)
Mọi người dành thời gian giải hộ mình bài toán với:
B2: Giải các PT sau:
d) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x+1\right)\left(7x-10\right)\)
e) \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
f) \(x\left(2x-7\right)-4x+14=0\)
g) \(3x-15=2x\left(x-5\right)\)
h) \(\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
i) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
j) \(\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
k) \(x\left(2x-9\right)=3x\left(x-5\right)\)
Các Pro giải giúp mik với :(
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
\(e,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(3x+36-8x=x^2+4x+4\)
\(-5x+36-x^2-4x-4=0\)
\(-9x+32-x^2=0\)
\(x\left(-9-x\right)+32=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\23-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=23\end{cases}}}\)
chúc cj hay a hc tốt
Tìm x biết:
\(a.3x^2-3x\left(x-2\right)=36\)
\(b.x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(c.\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
Giúp mk vs ạ <3 <3
a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)
GIẢI PHƯƠNG TRÌNH :
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
giải hộ e vs ạ !!!
e cảm ơn nhìu :3
(3x + 5)2 - (2x + 1)2 = 0
<=> (3x + 5 + 2x + 1)(3x + 5 - 2x - 1) = 0
<=> (5x + 6)(x + 4) = 0
<=> \(\orbr{\begin{cases}x=-\frac{6}{5}\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-\frac{6}{5};-4\right\}\)là nghiệm phương trình
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(3x+5+2x+1\right)\left(3x+5-2x-1\right)=0\)
\(\Leftrightarrow\left(5x+6\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=-\frac{6}{5}\)
Vậy tập nghiệm của phương trình là S = { -4 ; -6/5 }
Trả lời
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(3x+5-2x-1\right)\left(3x+5+2x+1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\5x+6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-\frac{6}{5}\end{cases}}\)
Vậy \(S=\left\{-4;-\frac{6}{5}\right\}\)
tìm x biết
a) \(\left(x-2\right)^3\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
b)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
c)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
d)\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
Giúp mk vs đc k ạ mk đg cần gấp
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
giải jùm vs
Rút gọn Pthức:
A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2+x+1}\right)\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)