A=2\13+2\3.5+2/5.7+.....+2\99.101
Tinh tổng:
a) 2/1.3+2/3.5+2/5.7+.........2/99.101
b) 5/1.3+5/3.5+5/5.7+....................5/99.101
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
tính tổng :
a.2/1.3+2/3.5+2/5.7+....+2/99.101
b.5/1.3+5/3.5+5/5.7+....+5/99.101
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
Bài 1: Tính tổng
a, 2\1.3+2\3.5+2\5.7+.......+2\99.101
b, 5\1.3+5\3.5+5\5.7+......+5\99.101
Bài 2: CMR phân số 2n+1\3n+2 là phân số tối giản
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
Tính : A=2/1.3+2/3.5+2/5.7+...+2/99.101 =?
A=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
A=1-1/100
A=99/100
\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(=\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{101}{101}-\frac{1}{101}\right)+0+0+...+0=\frac{100}{101}\)Chúc bạn học tốt!^_^
tính tổng :
a) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh
A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=1-\(\frac{1}{101}\)
=\(\frac{100}{101}\)
B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)
=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))
=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)
Chúc bạn học tốt
2/3.5+2/5.7+...+2/99.101
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(\dfrac{2}{3.5}=\dfrac{1}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{5.7}=\dfrac{1}{5}-\dfrac{1}{7}\)
\(\dfrac{2}{99.101}=\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Rightarrow=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{98}{303}\)
\(\dfrac{2}{3.5} + \dfrac{2}{5.7} + ..... + \dfrac{2}{99.101}\)
\(= \dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + ........ + \dfrac{1}{99} - \dfrac{1}{101}\)
\(= \dfrac{1}{3} - ( \dfrac{1}{5} - \dfrac{1}{5} ) + ........ + ( \dfrac{1}{99} -\dfrac{1}{99} ) - \dfrac{1}{101} \)
\(= \dfrac{1}{3} - \dfrac{1}{101}\)
\(= \dfrac{101}{303} - \dfrac{3}{303}\)
\(= \dfrac{98}{303}\)
a.2/1.3+2/3.5+2/5.7+...+2/99.101
b.5/1.3+5/3.5+5/5.7+...+5/99.101
giúp mk vs
a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{101-99}{99.101}\)
\(=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{101}{99.101}-\dfrac{99}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{500}{202}=\dfrac{250}{101}\)
a)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+..............+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...............+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
b)
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+......................+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...............+\dfrac{2}{99.101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+............+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}.\)\(B=\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.100}=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)=\dfrac{5}{2}.A=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}.\)
Tính tổng:
a,\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b,\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)