\(Cho:a+b+c=\frac{3}{2}.CMR:a^2+b^2+c^2\ge\frac{3}{4}\)
áp dụng cô si ta có:
+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)
+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)
+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)
\(Cho:a,b,c>0.CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương
Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:
\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Giải cách khác được ko bn ơi mình chưa học BĐT Cô-si
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)
\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều
Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)
\(Cho:a;b\ge0.\)
\(CMR:\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
Xét x^3 + y3 - xy.(x+y)
= (x+y) . ( x^2 - xy + y^2 - xy) = (x+y).(x^2-2xy+y^2)
=(x+y).(x-y)^2 >= với mọi x,y >=0 . Dấu "=" xảy ra <=> x=y >=0
Áp dụng bđt trên cho a,b >=0 có VT = \(\frac{4\left(a^3+b^3\right)}{8}\)= \(\frac{a^3+b^3+3\left(a^3+b^3\right)}{8}\)
>= \(\frac{a^3+b^3+3ab.\left(a+b\right)}{8}\) = \(\frac{\left(a+b\right)^3}{8}\) = \(\left(\frac{a+b}{2}\right)^3\) = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b>=0
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
Cho a,b,c > 0. CMR:
1. \(a^3+b^3+c^3\ge3abc\)
2. \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
3. \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
4. \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
5. \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{ab+1}\)
6.\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)
Chứng minh \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
C1\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=VP\)
Dấu bằng xảy khi a=b=c
C2 Áp dụng cosi ta có :
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3a^2\);\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3b^2\); \(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3c^2\)
Cộng 3 vế của 3 BĐT ta được ĐPCM
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)