\(Cho:a,b,c>0.CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
\(Cho:a;b\ge0.\)
\(CMR:\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Chứng minh rằng
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\))
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
\(Cho:a,b>0.CMR:\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
Cho a,b,c dương và a+b+c=3. c/m\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
và \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\ge\frac{3}{2}\)
Cho:\(a\ge b\ge c\ge0.CMR:a^3b^2+b^3c^2+c^3a^2\ge a^2b^3+b^2c^3+c^2a^3\)
1. Cho \(a>0,b>0\). C/m \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
2. Cho \(a\ne0,b\ne0\). C/m \(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\)
3. C/m \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
4. C/m \(\frac{x^2+y^2}{2}\ge\left(\frac{x+y}{2}\right)^2\)
5. \(\forall a,b>0\). C/m \(\frac{a^3}{b}+b^3>a^2+ab\)