F(x)=x4+5x2-4x+x5-x4-8x2+3+2x3+2
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
1x 4 + 2 x6 + 3x8+4x 10 + 5x12/ 5x2+10 x 3 + 15 x4+ 20 x5+ 25 x6
\(\dfrac{1.4+2.6+3.8+4.10+5.12}{5.2+10.3+15.4+20.5+25.6}\)
\(=\dfrac{2\left(1.2+2.3+3.4+4.5+5.6\right)}{5\left(1.2+2.3+3.4+4.5+5.6\right)}\)
\(=\dfrac{2}{5}\)
Cho f(x)= x 4 - 2 x 3 - 5 x 2 + 2 x + 1 24 ( x - 1 )
Tính f ( 4 ) (2) (Đạo hàm bậc 4 của f(x) tại (2).
A. -72
B. 1/24
C. -3
D. 16
Rút gọn các phân thức sau
1) 9 - ( x + 5)2 / x2 + 4x + 4
2) 32x - 8x2 + 2x3 / x3 + 64
3) 5x3 + 5x / x4 -1
4) 3x2 - 12x + 12 / x4 - 8x
5) 2a2 - 2ab / ac + ad - bc -bd
6) x2 - xy / y2 - x2
7) 2 - 2a / a3 - 1
8) x7 - x4 / x6 - 1
9) ( x + 2 )2 - ( x - 2)2 / 16x
10) 24,5x2 - 0,5y2 / 3,5x2 - 0,5xy
11) a3 - 3a2 + 2a - 6 / a2 +2
12) ( a - b) ( c - d) / (b2- a2) ( d2 - c2)
Giúp mình với ạ, mình cảm ơn !
1: \(=\dfrac{-\left[\left(x+5\right)^2-9\right]}{\left(x+2\right)^2}=\dfrac{-\left(x+5-3\right)\left(x+5+3\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+8\right)}{x+2}\)
2: \(=\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)
3: \(=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{5x}{x^2-1}\)
4: \(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
5: \(=\dfrac{2a\left(a-b\right)}{a\left(c+d\right)-b\left(c+d\right)}=\dfrac{2a\left(a-b\right)}{\left(c+d\right)\left(a-b\right)}=\dfrac{2a}{c+d}\)
6: \(=\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\cdot\left(-1\right)=\dfrac{-x}{x+y}\)
7: \(=\dfrac{2\left(1-a\right)}{-\left(1-a^3\right)}=\dfrac{-2\left(1-a\right)}{\left(1-a\right)\left(1+a+a^2\right)}=-\dfrac{2}{1+a+a^2}\)
8: \(=\dfrac{x^4\left(x^3-1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\dfrac{x^4}{x^3+1}\)
9: \(=\dfrac{\left(x+2-x+2\right)\left(x+2+x-2\right)}{16x}=\dfrac{4\cdot2x}{16x}=\dfrac{1}{2}\)
10: \(=\dfrac{0.5\left(49x^2-y^2\right)}{0.5x\left(7x-y\right)}=\dfrac{1}{x}\cdot\dfrac{\left(7x-y\right)\left(7x+y\right)}{7x-y}\)
\(=\dfrac{7x+y}{x}\)
A(x)=x4+2x3-5x2-3x-6
B(x)=-x4-2x3+5x2+x+10
a/Tìm đa thức M(x) sao cho B(x)-M(x)=A(x)
a) Ta có: B(x)-M(x)=A(x)
nên M(x)=B(x)-A(x)
\(=x^4-2x^3+5x^2+x+10-x^4-2x^3+5x^2+3x+6\)
\(=-4x^3+10x^2+4x+16\)
Giup mik với :
C1/.x4+2x3-4x-4 C2/ x(x+2y)3-y(2x+y)3 C3/. x4- 30x2+31x-30 C4/. 60x+18x2- 6x3 C5/. x4+6x+8 C6/. x4- 5x2+x3 -5x
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)
\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)
\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)
\(=5x^2+4x+4\)
thực hiện phép chia
(-3x3 + 5x2 - 9x + 15) : (-3 + 5)
(x4 - 2x3 + 2x -1) : (x2 - 1)
(5x4 + 9x3 - 2x2 - 4x -8) : (x-1)
(5x3 + 14x2 + 12x + 8) : (x+2)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
f(x)=3x5-5x2+x4-2/3x-x5+3x4-2x2+x+1
xắp xếp đa thức theo lũy thừa giảm dần của biến
\(f\left(x\right)=3x^5-5x^2+x^4-\dfrac{2}{3}x-x^5+3x^4-2x^2+x+1\)
\(\Rightarrow f\left(x\right)=2x^5-7x^2+4x^4+\dfrac{1}{3}x+1\)
Sắp xếp đa thức trên theo lũy thừa giảm dần của biến :
\(f\left(x\right)=2x^5+4x^4-7x^2+\dfrac{1}{3}x+1\)
f(x) = 3x⁵ - 5x² + x⁴ - 2/3 x - x⁵ + 3x⁴ - 2x² + x + 1
= (3x⁵ - x⁵) + (x⁴ + 3x⁴) + (-5x² - 2x²) + (-2/3 x + x) + 1
= 2x⁵ + 4x⁴ - 7x² +1/3 x + 1