Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenducloc
Xem chi tiết

Giải:

Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B

Ta có:

A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) 

10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\) 

10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

10A=\(1+\dfrac{9}{10^{1991}+1}\) 

Tương tự:

B=\(\dfrac{10^{1991}}{10^{1992}}\) 

10B=\(\dfrac{10^{1992}}{10^{1992}}=1\) 

Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B

⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)

Hoàng Thị Thanh Huyền
Xem chi tiết
Phạm Nguyễn Trâm Anh
4 tháng 5 2015 lúc 20:09

A>B

hình như zậy đó

 

 

 

Phan Đức Gia Linh
Xem chi tiết
Nguyễn Thanh Hằng
9 tháng 4 2017 lúc 16:07

Ta có :

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)

\(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

~ Chúc bn học tốt ~

Trần Thùy Dung
9 tháng 4 2017 lúc 16:01

Ta có:

A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)


B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)

Thần Chết
9 tháng 4 2017 lúc 20:13

Ta có B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)<\(\dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\dfrac{10^{1991}+10}{10^{1992}+10}\)=\(\dfrac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)=A

Vậy B<A

htfziang
Xem chi tiết

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

___Kiều My___
Xem chi tiết
Lê Văn Phong
Xem chi tiết
Lê Văn Phong
Xem chi tiết
Angel from the hell
Xem chi tiết
Lê Thị Diễm Quỳnh
Xem chi tiết
soyeon_Tiểu bàng giải
18 tháng 7 2016 lúc 16:31

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)

=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)

=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)

=> B < A

Nguyễn Thị Bích Ngọc
18 tháng 7 2016 lúc 16:32

Bài này mình biết làm nè , nhưng ... dài dòng lắm 

Nguyễn Thị Bích Ngọc
18 tháng 7 2016 lúc 16:40

Bài này còn có cách khác