Ta có :
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)
Vì \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
~ Chúc bn học tốt ~
Ta có:
A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)
B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)
Ta có B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)<\(\dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\dfrac{10^{1991}+10}{10^{1992}+10}\)=\(\dfrac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)=A
Vậy B<A