Tìm GTNN của A=(x-y)/(x^4+y^4+6)
tìm gtln và gtnn của A=(x-y)/(x^4+y^4+6)
tìm gtnn cua A= x-y / x^4+y^4 +6
1. cho A=x^2(x+4) tìm gtnn của a KHI x>=2
2. Cho x>=4 X+y>=6
img gtnn của B=x^2 +y^2
3. a,b>0 a+b=1 max c=ab (a^2+b^2)
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
Tìm GTNN của A=\(\frac{x-y}{x^4+y^4+6}\) viết câu trả lời của bạn bằng số thập phân đơn giản nhất!
Cho a, b, c >= 0 tm a²+b²+c²=6. Tìm GTNN của P = căn(4-x²) + căn(4-y²) + căn (4-z²)
cho điểm A (-4,-2) đường tròn (C) (x-3)^2+(y+4)^2=12 đường thẳng d x+y-6=0. M là điểm di động trên (C). Tìm GTLN,GTNN của đoạn MA
Tìm GTNN của \(A=x+\dfrac{1}{y}+\dfrac{4}{x-y}\) (với \(x>y>0\)).
Lời giải:
$A=(x-y)+\frac{4}{x-y}+y+\frac{1}{y}$
Áp dụng BĐT Cô-si:
$(x-y)+\frac{4}{x-y}\geq 2\sqrt{(x-y).\frac{4}{x-y}}=4$
$y+\frac{1}{y}\geq 2$
$\Rightarrow A\geq 4+2=6$
Vậy $A_{\min}=6$ khi $(x,y)=(3,1)$
Cho x,y >=0, 2x+y>=4, 2x+3y>=6. Tìm GTNN, GTLN của P=x^2-2x-y
Cho x,y dương t/m \(x+y=\sqrt{10}\). Tìm GTNN của \(A=\left(x^4+1\right)\left(y^4+1\right)\)
Bạn tham khảo:
Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24