Giải Phương trình sau: (x-2021)^2022+|x-2022|^2022=1
Giải phương trình sau: \(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
`<=>(x-1)/2023-1+(x-2)/2022-1=(x-3)/2021-1+(x-4)/2020-1`
`<=>(x-2024)/2023+(x-2024)/2022=(x-2024)/2021+(x-2024)/2020`
`<=>(x-2024)(1/2023+1/2022-1/2021-1/2020)=0`
`<=>x-2024=0(1/2023+1/2022-1/2021-1/2020>0)`
`<=>x=2024`
=>\(\left(\dfrac{x-1}{2023}-1\right)+\left(\dfrac{x-2}{2022}-1\right)=\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-4}{2020}-1\right)\)
=>x-2024=0
=>x=2024
\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
⇔\(\dfrac{x-1}{2023}-1+\dfrac{x-2}{2022}-1=\dfrac{x-3}{2021}-1+\dfrac{x-4}{2020}\)
⇔\(\dfrac{x-1}{2023}-\dfrac{2023}{2023}+\dfrac{x-2}{2022}-\dfrac{2022}{2022}=\dfrac{x-3}{2021}-\dfrac{2021}{2021}+\dfrac{x-4}{2020}-\dfrac{2020}{2020}\)
⇔\(\dfrac{x-2024}{2023}+\dfrac{x-2024}{2022}=\dfrac{x-2024}{2021}+\dfrac{x-2024}{2020}\)
⇔\(\dfrac{x-2024}{2023}+\dfrac{x-2024}{2022}-\dfrac{x-2024}{2021}-\dfrac{x-2024}{2020}=0\)
⇔\(\left(x-2024\right)\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\ne0\right)\)
⇔\(x-2024=0\)
⇔\(x=2024\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2021}+y^{2021}+z^{2021}=3^{2022}\end{matrix}\right.\)
PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Nhận thấy VT\(\ge\)0 với mọi x,y,z
Dấu = xảy ra <=> x=y=z
Thay x=y=z vào pt (2) ta được:
\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy (x;y;z)=(3;3;3)
P(x)=x^101-2022*x^100+2022*x^99-2022*x^98+...+2022*x-1
Khi x=2021
Ta có \(x+1=2022\)
\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)
\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)
-> P(x) = 2020
\(\dfrac{-6}{17}x\dfrac{-2021}{2022}+\dfrac{2021}{2022}x\dfrac{-23}{17}+\dfrac{2021}{2022}\)
\(=\dfrac{2021}{2022}\left(\dfrac{6}{17}-\dfrac{23}{17}\right)+\dfrac{2021}{2022}=\dfrac{-2021}{2022}+\dfrac{2021}{2022}=0\)
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
tìm x biết |x^2022+|x+1||=x^2022+2021
(X x 0,25 + 2021) x 2022 = (50 + 2021) x 2022
x+1/2021*2022+1/2021*2022+......+1/3*2+1/3*2=1