Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Khánh Linh
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2023 lúc 19:09

d ở đâu ra vậy em?

Lê Trúc Anh
Xem chi tiết
Akai Haruma
23 tháng 7 2021 lúc 18:28

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.

Sayaka
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 10:03

\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)

nguyễn lê gia linh
Xem chi tiết
Thanh Thảo Lê
22 tháng 11 2017 lúc 22:43

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

Đàm Thị Thu Trang
7 tháng 11 2021 lúc 8:53

khó quá

mình cũng đang hỏi câu đấy đây

 

Huỳnh Ngọc Ngân
Xem chi tiết
tth_new
24 tháng 2 2019 lúc 17:45

a) PT có nghiệm tức là \(\Delta'=\left(a+3\right)^2-2\left(a+1\right)\ge0\)

\(\Leftrightarrow a^2+4a+7\ge0\) (luôn đúng)

Do \(a^2+4a+7=\left(a+2\right)^2+3\ge3>0\forall a\)

Vậy pt luôn có 2 nghiệm phân biệt.

b)Tương tự

Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Minh Tùng
15 tháng 12 2023 lúc 21:24

(x+15)⋮(x+6)

Đỗ Nhật Minh
15 tháng 12 2023 lúc 21:27

Cho đề bài chi tiết đi bạn

 

 

GIANG THU PHUONG
Xem chi tiết
Nguyễn Hoàng Anh Phong
20 tháng 12 2018 lúc 20:17


ADTCDTSBN:

có: \(\frac{x-1}{2}=\frac{y}{3}=\frac{z+2}{6}=\frac{x-1+y-z-2}{2+3-6}=\frac{-5-3}{-1}=8\)

=> \(\frac{x-1}{2}=8\Rightarrow x-1=16\Rightarrow x=17\)

=>...

bn tự làm tiếp nha

Nguyễn Hoàng Anh Phong
20 tháng 12 2018 lúc 20:23

ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(*)

Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=2\)(**)

Từ (*);(**) \(\Rightarrow1< A< 2\Rightarrow A\notin Z\)

Bùi Hồng Anh
Xem chi tiết
Ashshin HTN
16 tháng 9 2018 lúc 15:40

11 phút trước (15:52)

Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5

Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 9 Bất đẳng thức

VKOOK_BTS

Trả lời

0

Đánh dấu

8 phút trước (15:31)