Lời giải:
$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$
$\Rightarrow c< 0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$
Từ đây ta có:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)
\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)
\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)
\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))
Ta có đpcm.