Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Gia
Xem chi tiết
Lào Thị Khánh
Xem chi tiết
Nguyễn Đức Trí
10 tháng 9 2023 lúc 21:27

\(43^{43}-17^{17}\)

\(=43^{40}.43^3-17^{16}.17\)

\(=\overline{.....1}.\overline{.....7}-\overline{.....1}.7\)

\(=\overline{.....7}-\overline{.....7}\)

\(=\overline{.....0⋮}10\)

\(\Rightarrow dpcm\)

Nguyễn Ngọc Minh
Xem chi tiết
Phùng Minh Quân
1 tháng 7 2018 lúc 14:29

Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi 

* Nếu x và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)

\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)

Vậy A là số chẵn 

* Nếu x chẵn và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ ) 

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn ) 

Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x lẻ và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)

Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)

\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)

\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)

Vậy A là số chẵn 

Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên 

Vậy A là số chẵn \(\forall x,y\inℤ\)

Chúc bạn học tốt ~ 

NGUYỄN HƯƠNG GIANG
Xem chi tiết
Lê Nhật Khôi
5 tháng 2 2018 lúc 19:43

Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)

Gọi số trung bình cộng là: \(\overline{X}\)

Gọi a là số bất kì 

Theo đề bài ta có:

\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)

Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)

Mà \(N=n_1+n_2+...+n_k\)

Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)

Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)

Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)

Bùi Mai Anh
Xem chi tiết
Lan Nguyễn
Xem chi tiết
Hồ Nhật Phi
21 tháng 3 2022 lúc 22:44

a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.

b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).

Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:

m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.

Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.

Với m=1, x=1.

Với m=-1, x=-1.

So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.

Byul Baekhyun
Xem chi tiết
Ngô Văn Nam
1 tháng 1 2016 lúc 19:25

Ta có thể thấy 11 số bất kì trong các số đó tổng của các số đó là 1 số nguyên âm
=>Vậy ta có :
        100:11=9(Dư 1)
=>Ta có 9 tổng đều là số nguyên 
=>Vậy 100 số đó là số nguyên âm

Nobita Kun
1 tháng 1 2016 lúc 19:42

Ta có phép chia:

100 : 11 = 9 (dư 1)

Gọi các số đó là a1; a2; a3;...;a100

Giả sử tất cả đều là số nguyên dương thì tổng của 11 số bất kì là 1 số nguyên dương (Trái với điều kiện đề bài)

Do đó có ít nhất 1 số là số nguyên âm

Vì vai trò của các số là như nhau nên giả sử a100 (số bị dư ra ở phép chia bước đầu) là số nguyên âm    (1)

Đặt A = a1 + a2 + a3 +...+ a100

A = {(a1 + a2 + a3 +...+ a11) + (a12 + a13 + a14 +...+ a22) +...+ (a89 + a90 + a91 + a92 +...+ a99)} + a100 (Vì dư ra 1 số)

                                                                                      9 cặp số

Vì tổng của 11 số bất kì là số nguyên âm nên tổng của 9 cặp số là số nguyên âm (Vì âm + âm = âm)

Mà a100 là số nguyên âm  (Theo (1))

Từ 2 điều trên => A là số nguyên âm (ĐPCM)
Vậy...

Mà a100 là số nguyên âm

Byul Baekhyun
1 tháng 1 2016 lúc 19:50

Còn cách nào khác ko bạn @Ngô Văn Nam

Bùi Mai Anh
Xem chi tiết
nguyễn thùy linh
30 tháng 11 2017 lúc 18:14

 A=[(-4x-8)+13]/(x+2) 
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z) 
hay (x+2) thuộc Ư(13)={-1;1;13;-13} 
tìm x 
B=[(x²-1)+6]/(x-1) 
=x+1+6/(x-1) 
làm tiếp như A 
C=[(x²+3x+2)-3]/(x+2) 
=[(x+2)(x+1)-3]/(x+2) 
=x+1-3/(x+2) 
làm tiếp như A 
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không 
3,4 cũng vậy

Lê Trọng Quý
Xem chi tiết

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

a, \(\overline{aaa}\) \(⋮\) 37

    \(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)

b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11

  \(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11