Nếu \(\int\limits^6_0\) f(x) dx=12 thì \(\int\limits^2_0\) f(3x)dx bằng
A. 6
B. 36
C. 2
D. 4
Nếu \(\int\limits^2_1\) f(x) dx = -2 và \(\int\limits^3_2\) f(x) dx =1 thì \(\int\limits^3_1\) f(x) dx bằng
A. -3
B. -1
C. 1
D. 3
\(\int\limits^3_1f\left(x\right)dx=-2+1=-1\)
Cho hàm số y = f(x) liên tục trên \(\left[0;2\right]\), thỏa mãn các điều kiện f(2) = 1 và \(\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left[f'\left(x\right)\right]^2dx=\dfrac{2}{3}\) Giá trị của f(1) bằng
Khi gặp dạng này, ý tưởng là sẽ tìm 1 hàm u(x) sao cho:
\(\int\limits^b_a\left[f'\left(x\right)-u\left(x\right)\right]^2dx=0\) (1)
\(\Rightarrow f'\left(x\right)-u\left(x\right)=0\Rightarrow f'\left(x\right)=u\left(x\right)\)
Khai triển (1), đề cho sẵn \(\left[f'\left(x\right)\right]^2\) nên đại lượng \(2u\left(x\right).f'\left(x\right)\) và hàm \(u\left(x\right)\) sẽ được suy ra từ việc tích phân từng phần \(\int\limits f\left(x\right)dx\). Cụ thể:
Xét \(I=\dfrac{2}{3}=\int\limits^2_0f\left(x\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.f\left(x\right)|^2_0-\int\limits^2_0xf'\left(x\right)dx=2-\int\limits^2_0xf'\left(x\right)dx\)
\(\Rightarrow\int\limits^2_0xf'\left(x\right)dx=2-\dfrac{2}{3}=\dfrac{4}{3}\) (2)
(Vậy đến đây hàm \(u\left(x\right)\) được xác định là dạng \(u\left(x\right)=k.x\)
Để tìm cụ thể giá trị k:
Từ (1) ta suy luận tiếp:
\(\int\limits^2_0\left[f'\left(x\right)-kx\right]^2dx=0\Leftrightarrow\int\limits^2_0\left[f'\left(x\right)\right]^2-2k\int\limits^2_0x.f'\left(x\right)dx+\int\limits^2_0k^2x^2dx=0\)
\(\Leftrightarrow\dfrac{2}{3}-2k.\dfrac{4}{3}+\dfrac{8}{3}k^2=0\) do \(\int\limits^2_0x^2dx=\dfrac{8}{3}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow u\left(x\right)=\dfrac{1}{2}x\) coi như xong bài toán)
Do đó ta có:
\(\int\limits^2_0\left[f'\left(x\right)\right]^2-\int\limits^2_0xf'\left(x\right)+\dfrac{1}{4}\int\limits^2_0x^2dx=\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{1}{4}.\dfrac{8}{3}=0\)
\(\Rightarrow\int\limits^2_0\left[f'\left(x\right)-\dfrac{1}{2}x\right]^2dx=0\)
\(\Rightarrow f'\left(x\right)-\dfrac{1}{2}x=0\)
\(\Rightarrow f'\left(x\right)=\dfrac{1}{2}x\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2+C\)
Thay \(x=2\Rightarrow1=1+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2\)
Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
\(\int\limits^3_{-1}f\left(\left|x\right|\right)dx=\int\limits^0_{-1}f\left(\left|x\right|\right)dx+\int\limits^1_0f\left(\left|x\right|\right)dx+\int\limits^3_1f\left(\left|x\right|\right)dx\)
\(=\int\limits^0_{-1}f\left(-x\right)dx+\int\limits^1_0f\left(x\right)dx+\int\limits^3_1f\left(x\right)dx\)
\(=\int\limits^1_0f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx+\int\limits^3_1f\left(x\right)dx\)
\(=3+3+6=12\)
cho \(\int\limits^2_0\frac{dx}{x^2-x+1}=\int\limits^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\frac{2}{a}dx\) . Chon khẳng định đúng
Đề thiếu. Bạn xem lại đề.
cho f(x) là hàm số liên tục trên R;\(\int\limits^2_0f\left(x\right)dx=-5,\int\limits^3_1f\left(2x\right)dx=10\) tính giá trị của \(\int\limits^2_0f\left(3x\right)dx\)
Lời giải:
Ta có : \(10=\int ^{3}_{1}f(2x)dx=\frac{1}{2}\int ^{3}_{1}f(2x)d(2x)=\frac{1}{2}\int ^{6}_{2}f(x)dx\)
\(\Rightarrow \int ^{6}_{2}f(x)d(x)=20\)
Mà \(\int ^{2}_{0}f(x)dx=-5\Rightarrow \int ^{6}_{0}f(x)dx=15\)
Do đó mà \(\int ^{2}_{0}f(3x)dx=\frac{1}{3}\int ^{2}_{0}f(3x)d(3x)=\frac{1}{3}\int ^{6}_{0}f(x)dx=5\)
thầy giúp e 2 câu này với ạ :v
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
Cho hàm số f(x) liên tục trên R và \(\int\limits^6_2f\left(x\right)dx=6\). Tính tích phân I = \(\int\limits^2_0f\left(2x+2\right)dx\)
Đặt \(2x+2=u\Rightarrow2xdx=du\Rightarrow dx=\dfrac{1}{2}du\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=2\\x=2\Rightarrow u=6\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^6_2f\left(u\right).\dfrac{1}{2}du=\dfrac{1}{2}\int\limits^6_2f\left(u\right)du=\dfrac{1}{2}\int\limits^6_2f\left(x\right)dx=\dfrac{1}{2}.6=3\)
Tính các tích phân sau :
a) \(\int\limits^2_0\left|1-x\right|dx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\sin^2xdx\)
c) \(\int\limits^{ln2}_0\dfrac{e^{2x+1}+1}{e^x}dx\)
d) \(\int\limits^{\pi}_0\sin2x\cos^2xdx\)