Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thu trang
Xem chi tiết
Nguyễn Hằng
12 tháng 7 2017 lúc 12:33

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n

 Mashiro Shiina
12 tháng 7 2017 lúc 13:02

Gọi \(d\)\(UCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)

hồ thị lê
Xem chi tiết
Khánh Ngọc
30 tháng 7 2020 lúc 14:21

a. Gọi d là ƯCLN của  \(\frac{3n-1}{5n-2}\) , ta có :

\(\left(5n-2\right)-\left(3n-1\right)⋮d\)

\(\Rightarrow3\left(5n-2\right)-5\left(3n-1\right)⋮d\)

\(\Rightarrow15n-6-15n-5⋮d\)

\(\Rightarrow1⋮d\)

Vậy A tối giản với mọi n

b làm tương tự

Khách vãng lai đã xóa
Xyz OLM
30 tháng 7 2020 lúc 14:22

a) Gọi ƯCLN(3n - 1;5n - 2) = d

=> \(\hept{\begin{cases}3n-1⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(3n-1\right)⋮d\\3\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}15n-5⋮d\\15n-6⋮d\end{cases}}\Rightarrow\left(15n-5\right)-\left(15n-6\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 3n - 1 ; 5n - 2 là 2 số nguyên tố cùng nhau

=> \(\frac{3n-1}{5n-2}\)là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 2n - 1) = d

=> \(\hept{\begin{cases}2n+3⋮d\\2n-1⋮d\end{cases}}\Rightarrow2n+3-\left(2n-1\right)⋮d\Rightarrow4⋮d\Rightarrow d\inƯ\left(4\right)\Rightarrow d\in\left\{1;2;4\right\}\)

Vì 2n + 3 ; 2n - 1 là số lẻ với mọi \(n\inℕ^∗\)

=> 2n + 3 ; 2n - 1 không chia hết cho 2 ; 4

=> d = 1

=> 2n + 3 ; 2n - 1 là 2 số nguyên tố cùng nhau

=> B là phân số tối giản

Khách vãng lai đã xóa
lê quyên thảo
30 tháng 7 2020 lúc 14:57

ai biét

Khách vãng lai đã xóa
Phan Thị Quỳnh Thư
Xem chi tiết
Minh  Ánh
5 tháng 8 2016 lúc 9:29

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

Die Devil
5 tháng 8 2016 lúc 9:33

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

Lê Thị Nhung Nguyệt
Xem chi tiết
Quang
23 tháng 4 2017 lúc 9:54

Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1

Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:

\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)

\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)

Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)

\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)

Vì  \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.

Kudo Shinichi
23 tháng 4 2017 lúc 9:19

Gọi d là UCLN của 2n +1 và 3n+2

2n+1\(⋮\)d

\(3n+2⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d

\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

Nguyễn Thị Thanh Thảo
13 tháng 4 2018 lúc 9:42

Gọi d là ƯC của 2n+1 và 3n+2

( 2 n + 1 ) \(⋮\)d\(\Rightarrow\)3 × ( 2 n + 1 ) \(\Rightarrow\)( 6 n + 1 )

( 3 n + 2 ) \(⋮\)d\(\Rightarrow\)2 × ( 3 n + 2 ) \(\Rightarrow\)( 6 n + 2 )

\(\Rightarrow\)(3 n + 1 - 3 n + 2 )

= 1  

\(\Rightarrow\)d = 1 ; d = -1

trần quang linh
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết
Thảo Nguyên
Xem chi tiết
Muôn cảm xúc
6 tháng 5 2016 lúc 16:54

Gọi UCLN(2n + 1 ; 3n + 2) = d

2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d

3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d

=> [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d => d = 1

Vì UCLN(2n + 1 ; 3n + 2) = 1

Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)

Mai Linh
6 tháng 5 2016 lúc 15:21

goij d là ước chung của 2n +1 và 3n+2

2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)

lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1

nên phân số đã cho tối giản

 

 

đào thị hoàng yến
10 tháng 5 2016 lúc 15:02

Để 2n + 1 / 3n+2  là phân số tôi giản thì 2n+1 và 3n +2 phải nguyên tố cùng nhau

Gọi d là ƯCLN(2n+1,3n+2) ; d thuộc N*

Suy ra 2n+1 chia hết cho d và 3n + 2 chia hết cho d

Hay :   3.(2n+1) chia hết cho d và 2. (3n+2) chia hết cho d

=>       6n+3 chia hết cho d và 6n+4 chia hết cho d 

Suy ra [ ( 6n+4)-(6n+3 )] chia hết cho d

       => ( 6n+4 - 6n - 3 ) chia hết cho d

       =>             1            chia hết cho d 

       => d thuộc Ư(1) ={1} nên d =1

                                         Hay ƯCLN (2n+1 , 3n+2 ) =1

Vậy 2n+1 / 3n+2 là phân số tối giản

Nguyễn Thị Tố Quyên
Xem chi tiết
Huỳnh Quang Sang
30 tháng 4 2019 lúc 20:04

                                                Lời giải:

Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)

=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

=> \((6n+4)-(6n+3)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản

Nicky Grimmie
Xem chi tiết
Nguyễn Tuấn Minh
4 tháng 4 2017 lúc 12:12

Gọi d=ƯCLN(2n+1;3n+2)

Ta có 2n+1 : d

       3n+2 :d   ( mình viết dấu : thay cho dấu chia hết nhé)

=>3(2n+1) :d

2(3n+2):d

=>6n+3 :d

   6n+4 :d

=> (6n+4)-(6n+3):d

=>1:d

=>d=1

=> ƯCLN(2n+1;3n+2)=1

Vậy phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản