Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Maii
Xem chi tiết
Nguyễn Thị Thương Hoài
17 tháng 12 2023 lúc 18:47

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

Nguyễn Huy Trường Lưu
Xem chi tiết
Hà Quang Minh
1 tháng 8 2023 lúc 20:29

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

An Bùi
Xem chi tiết
Hồng Phúc
11 tháng 9 2021 lúc 8:29

\(B=1+3+3^2+3^3+...+3^{100}+3^{101}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(\Rightarrow3B-B=3^{102}-1\)

\(\Leftrightarrow2B=3^{102}-1\)

\(\Leftrightarrow B=\dfrac{3^{102}-1}{2}\)

Nguyễn Hà Chi
Xem chi tiết
Ran Mori
24 tháng 7 2017 lúc 17:50

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

Trần Nhật Minh
24 tháng 10 2023 lúc 21:33

+23+...+250

2�=2+22+23+...+251

2�−�=�=251−20

�=5+52+53+...+599+5100

5�=52+53+54+...+5100+5101

5�−�=4�=5101−5

�=5101−54

�=3−32+33−34+...+32007−32008+32009−32010

3�=32−33+34−35+...−32008+32009−32010+32011

3�+�=4�=32011+3

�=32011+34

�100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)

�100=5×(9100−1)8

Py
Xem chi tiết
Miyuhara
6 tháng 7 2015 lúc 14:02

2A = 3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A = 3101 - 1

A = \(\frac{3^{101}-1}{2}\)

3B = 4B - B = (4 + 42 + ... + 451) - (1 + 4 + 42 + ... + 450)

3B = 451 - 1

B = \(\frac{4^{51}-1}{3}\)

 

ariana
28 tháng 9 2016 lúc 17:58

2A = 3A - A = ( 3 + 32  +  33  +  ...  +  3101 )  - ( 1 + 3 + 3+  33  +  ... + 3100 

2A = 3101 - 1

A =\(3^{101}-1\): 2

3B =  4B - B = ( 4 + 42  + ... +  451) - ( 1 + 4 + 42 +...+ 450 )

3B = 451 - 1

B = 451 - 1 : 3

Đặng Thị Ngọc Thủy
Xem chi tiết
Đỗ Lê Tú Linh
8 tháng 7 2015 lúc 19:47

A=1+3+32+...+3100

3A=3+32+33+...+3101

=>3A+1=1+3+32+...+3100+3101=A+3101

=>3A-A=3101-1

2A=3101-1

A=(3101-1)/2

B=1+4+42+...+450

4B=4+42+...+451

4B+1=1+4+42+...+450+451=B+451

=>4B-B=451-1

3B=451-1

B=(451-1)/3

Đỗ Văn Hoài Tuân
8 tháng 7 2015 lúc 19:34

Đầu luỹ thừa đuôi số hạng 

Lê Trung Hiếu
15 tháng 8 2018 lúc 19:14

A=\(\frac{3^{101}-1}{2}\)

B=\(\frac{4^{51}-1}{3}\)

khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 20:22

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

An Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 14:20

\(D=3^{100}+3^{101}+...+3^{149}+3^{150}\)

nên \(3D=3^{101}+3^{102}+...+3^{150}+3^{151}\)

\(\Leftrightarrow2\cdot D=3^{151}-3^{100}\)

hay \(D=\dfrac{3^{151}-3^{100}}{2}\)

Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 14:21

\(3D=3^{101}+3^{102}+3^{103}+...+3^{150}+3^{151}\\ 3D-D=3^{151}-3^{100}\\ 2D=3^{151}-3^{100}\\ D=\dfrac{3^{151}-3^{100}}{2}\)

Nguyễn Phương Linh
Xem chi tiết
Nobita Kun
15 tháng 11 2015 lúc 17:13

a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)

3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101

3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)

2A = 3101 - 31 = 3101 - 3

A = \(\frac{3^{101}-3}{2}\)

b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)

A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)

A = 120 +...+ 396.120

A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)