so sánh
2011/2012+2012/2013+2013/2011 với 3
So sánh 2011/2012+2012/2013+2013/2011 với 3
Ta có : \(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2011}=1+\frac{2}{2011}\)
Ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)+\left(1+\frac{2}{2011}\right)\)
= \(\left(1+1+1\right)+\left(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)\)
Ta có :
\(\frac{1}{2012}+\frac{1}{2013}< \frac{1}{2012}+\frac{1}{2012}=\frac{2}{2012}\)
mà : \(\frac{2}{2012}< \frac{2}{2011}=>\frac{1}{2012}+\frac{1}{2013}< \frac{2}{2011}\)
=> \(\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>0\)
Vậy : \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>3\)
Vậy : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
ủng hộ mik nhá các bạn ơiii ^_^"
So sánh $\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}$ với 3
Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)
Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)
Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)
Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)
Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)
Bài 1
so sanh 2010/2011+2011/2012+2012/2013+2013/2010 với 4
Bài 2
A=2011+2012/2012+2013 và B=2011/2012+2012/2013
Bài 3
E=1/3+2/32+3/33+..+100/3100
Chứng minh E<3/4
so sánh P và Q
biết: P =2010/2011+2011/2012+2012/2013 Q=2010+2011+2012/2011+2012+2013
giúp mik với
so sánh \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\) với 3
Bài nãy sai rồi, cho mình làm lại nha:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}\)
Vì: \(\frac{1}{2011}>\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2012}+\frac{1}{2012}>0\)
\(\Rightarrow\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
Nên \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
Áp dụng tỉ dãy số bằng nhau, ta có:
\(\frac{2011+2012-2013}{2012+2013-2011}=\frac{2011-2012+2013}{2012+2013-2011}=\frac{2011-2012+2013}{-2011-2012+2013}=\left(-1\right)\)
So sánh: C=2011/2012+2012/2013+2013/2011 với 3
2011/2012+2012/2013+2013/2011
=2011/2012+2012/2013+1+2/2011
(1/2011+2011/2012)+(2012/2013+1/2012)+1
Vì 1/2011<1/2012 nên 1/2011+2011/2012<1
Vì 1/2011<1/2013 nên 1/2011+2012/2013<1
Suy ra C>1+1+1=3
Vậy C>3
So sánh : A = 2011+2012/2012+2013 và B = 2011/2012+2012/2013
Ta có :
B = \(\dfrac{2011}{2012}\) + \(\dfrac{2012}{2013}\) .
\(\dfrac{2011}{2012}\) > \(\dfrac{2011}{2012+2013}\) .
\(\dfrac{2012}{2013}\) > \(\dfrac{2012}{2012+2013}\) .
\(\Rightarrow\) A < B .
Ta có :
B = 2012201320122013 .
20112012+201320112012+2013 .
20122012+201320122012+2013 .
⇒⇒ A < B .
Giải:
Ta có:
\(A=\dfrac{2011+2012}{2012+2013}\)
\(A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Vì \(\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\)
\(\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\)
\(\Rightarrow A< B\)
So sánh A=2011+2012/2012+2013 và 2011/2012+2012+2013
so sánh
2010/2011+2011/2012+2012/2013
2010+2011+2012/2011+2012+2013
\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì \(\frac{2010}{2011+2012+2013}<\frac{2010}{2011};\frac{2011}{2011+2012+2013}<\frac{2011}{2012};\frac{2012}{2011+2012+2013}<\frac{2012}{2013}\)
nên phép dưới nhỏ hơn phép trên