Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)
Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)
Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)
Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)
Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)