x^2+x-4
Tính bằng hai cách (theo mẫu).
Mẫu: 4 x 3 x 2 = ..?.. Cách 1: 4 x 3 x 2 = (4 x 3) x 2 = 12 = 12 x 2 = 24 Cách 2: 4 x 3 x 2 = 4 = 4 x (3 x 2) = 4 x 6 = 24 |
4 x 2 x 5 7 x 2 x 3 6 x 3 x 3 6 x 2 x 4
4 x 2 x 5 = ?
Cách 1: 4 x 2 x 5 = (4 x 2) x 5 = 8 x 5 = 40
Cách 2: 4 x 2 x 5 = 4 x (2 x 5) = 4 x 10 = 40
7 x 2 x 3 = ?
Cách 1: 7 x 2 x 3 = (7 x 2) x 3 = 14 x 3 = 42
Cách 2: 7 x 2 x 3 = 7 x (2 x 3) = 7 x 6 = 42
6 x 3 x 3 = ?
Cách 1: 6 x 3 x 3 = (6 x 3) x 3 = 18 x 3 = 54
Cách 2: 6 x 3 x 3 = 6 x (3 x 3) = 6 x 9 = 54
6 x 2 x 4 = ?
Cách 1: 6 x 2 x 4 = (6 x 2) x 4 = 12 x 4 = 48
Cách 2: 6 x 2 x 4 = 6 x (2 x 4) = 6 x 8 = 48
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
Phân tích đa thức thành nhân tử:
1.45+x^3-5*x^2-9*x
2.x^4-2*x^3-2*x^2-2*x+3
3.x^4-5*x^2+4
4.x^4+64
5.x^5+x^4+1
6.(x^2+2*x)*(x^2+2*x+4)+3
7.(x^3+4*x+8)^2+3*x*(x^2+4*x+8)+2*x^2
8. x^3*(x^2-7)^2-36*x
9.x^5+x+1
10. x^8+x^4+1
11. x^5-x^4-x^3-x^2-x-2
12. x^9-x^7-x^6-x^5+x^4+x^3+x^2-1
13. (x^2-x)^2-12*(x^2-x)+24
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`
1:
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)
\(\Leftrightarrow x^2+5x=0\)
=>x=0 hoặc x=-5
3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
Tính nhẩm:
a) 2 x 2 = ...... 3 x 3 = ......
2 x 4 = ...... 3 x 5 = ......
2 x 6 = ...... 3 x 7 = ......
2 x 8 = ...... 3 x 9 = ......
4 x 4 = ...... 5 x 5 = ......
4 x 2 = ...... 5 x 7 = ......
4 x 6 = ...... 5 x 9 = ......
4 x 8 = ...... 5 x 3 = ......
b) 200 x 4 = ...... 300 x 2 = ......
200 x 2 = ...... 300 x 3 = ......
400 x 2 = ...... 500 x 1 = ......
100 x 4 = ...... 100 x 3 = ......
a) 2 x 2 = 4 3 x 3 = 9
2 x 4 = 8 3 x 5 = 15
2 x 6 = 12 3 x 7 = 21
2 x 8 = 16 3 x 9 = 27
4 x 4 = 16 5 x 5 = 25
4 x 2 = 8 5 x 7 = 35
4 x 6 = 24 5 x 9 = 45
4 x 8 = 32 5 x 3 = 15
b) 200 x 4 = 800 300 x 2 = 600
200 x 2 = 400 300 x 3 = 900
400 x 2 = 800 500 x 1 = 500
100 x 4 = 400 100 x 3 = 300
Trả lời 1 câu thôi nhé em 100 nhân 4 bằng 400 nhá em
a) 2 x 2 =4 ...... 3 x 3 = ..9....
2 x 4 = ....8.. 3 x 5 = ...15...
2 x 6 = ....12.. 3 x 7 = .21.....
2 x 8 = ..16.... 3 x 9 = ..27....
4 x 4 = ...16... 5 x 5 = ...25...
4 x 2 = ...8... 5 x 7 = ..35....
4 x 6 = .....24. 5 x 9 = .45.....
4 x 8 = ..32.... 5 x 3 = .15.....
b) 200 x 4 = 800...... 300 x 2 =600 ......
200 x 2 = ..400.... 300 x 3 = 900......
400 x 2 = .....800. 500 x 1 = ..500....
100 x 4 = ....400.. 100 x 3 = .300.....
Câu 14. Tích ( 2).( 2) x x bằng:
A. 2 x 4 .
B. 2 x 4 .
C. 2 x x 4 4 .
D. 2 x x 4 4
Khi phân tích đa thức \(P = {x^4} - 4{x^2}\) thành nhân tử thì được:
A. \(P = {x^2}(x - 2)(x + 2)\)
B. \(P = x(x - 2)(x + 2)\)
C. \(P = {x^2}(x - 4)(x + 4)\)
D. \(P = x(x - 4)(x + 2)\)
\(P=x^2\left(x^2-4\right)=x^2\left(x-2\right)\left(x+2\right)\\ =>A\)
B=(4/x(x^2-4)+x-2/x^2-4):(x-2/x(x+2)-x/2x+4)
Tính nhẩm
3 x 4 = 2 x 6 = 4 x 3 = 5 x 6 =
3 x 7 = 2 x 8 = 4 x 7 = 5 x 4 =
3 x 5 = 2 x 4 = 4 x 9 = 5 x 7 =
3 x 8 = 2 x 9 = 4 x 4 = 5 x 9 =
Học sinh nhẩm và ghi kết quả như sau:
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
3 x4 = 12
3 x7 = 21
3 x5 = 15
3 x8 =24
2 x 6= 12
2 x8 = 16
2 x4 =8
2 x9 =18
4 x3 =12
4 x7 =28
4 x9 =36
4 x4 =16
5 x6 =30
5 x4 =20
5 x7 =35
5 x9 =45
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
Giải phương trình:
a) (x-2)2-(x-3)(x+3)=6
b) (x+3)2 + (4+x)(4-x)=10
c) (x+4)2 + (1-x)(1+x)=7
d) (x-4)2 -(x-2)(x+2)=6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
\(b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)
\(\Leftrightarrow x^2+6x+9+16-x^2=10\)
\(\Leftrightarrow6x+25=10\)
\(\Leftrightarrow6x=-15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
\(c,\left(x+4\right)^2+\left(1-x\right)\left(1+x\right)=7\)
\(\Leftrightarrow x^2+8x+16+1-x^2=7\)
\(\Leftrightarrow8x+17=7\)
\(\Leftrightarrow8x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{4}\)
\(d,\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
#\(Urushi\)