(2017-X)3+(2019-X)3+(2X-4036)3=0
SOS CÍUUUUU
(2017-x)\(^{\text{3}}\) + (2019-x)\(^{\text{3}}\) + (2x-4036)\(^{\text{3}}\) =0
Tìm x
Đặt 2017-x=a; 2019-x=b
\(\Leftrightarrow a+b=4036-2x\)
\(\Leftrightarrow-\left(a+b\right)=2x-4036\)
Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
\(\Leftrightarrow-3ab\left(a+b\right)=0\)
mà -3<0
nên \(ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy: S={2017;2018;2019}
Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)
Ta có: \(x+y+z=0\)
\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)
Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0
=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
Gải phương trình được x=2017; x=2019; x=2018
(2017−x)3+(2019−x)3+(2x−4036)3=0
(2017−x)3+(2019−x)3+(2x−4036)3=0
⇔(2017−x)3+(2019−x)3+(2x−4036)3=03⇔(2017−x)3+(2019−x)3+(2x−4036)3=03
⇒ 2017-x=0 ⇒ x= 2017
⇒ 2019-x=0 ⇒ x= 2019
⇒ 2x-4036=0 ⇒x= 2018
Vì x có 3 giá trị nên phương trình vô nghiệm.
Giải phương trình:
(2017 - x)3 + (2019 - x)3 + (2x - 4036)3 = 0
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy ...
Giải phương trình:
(2017 - x)3 + (2019 - x)3 + (2x - 4036)3 = 0
\(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Leftrightarrow\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0^3\)
\(\Rightarrow\hept{\begin{cases}2017-x=0\\2019-x=0\\2x-4036=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\x=2019\\x=2018\end{cases}}}\)
Vì x có 3 giá trị nên phương trình vô nghiệm
Giải phương trình:
(2017 - x)3 + (2019 - x)3 + (2x - 4036)3 = 0
nhận thấy (2017 - x) + (2019 -x) + (2x-4036) = 0
gọi 2017 - x = a ; 2019-x = b và 2x-4036 = c
có a+b+c=0 (=) a+b=-c (=) a3+b3+3ab.(a+b) = -c3 (=) a3+b3+c3 = 3abc (vì a+b=-c)
hay (2017 - x)3 + (2019 -x)3 + (2x-4036)3 = 3.(2017 - x).(2019 -x).(2x-4036) (1)
mà theo đề bài (2017 - x)3 + (2019 -x)3 + (2x-4036)3 =0 (2)
từ (1) và (2) =) 3.(2017 - x).(2019 -x).(2x-4036) =0
=) 2017 - x=0 hoặc 2019 -x=0 hoặc 2x-4036=0
(=) x=2017 hoặc x=2019 hoặc x=2018
vậy....
Giai pt
(2017-x)3+(2019-x)3+(2x-4036)3=0
Cho 3 so a,b,c biet rang 0<a< b < c. Cm
a/b+b/c+c/a > b/a +c/b + a/c
Tính nhanh :
2016 x 2017 + 4034/2018 x 2019 + 4036
Tính nhanh
A= 2016 x 2017 +4034 / 2018 x 2019 - 4036
1) Cho 3 số a,b,c thỏa mãn 0 < a <= b <= c. Chứng minh rằng:
a/b + b/c + c/a >= b/a + c/a + a/c
2) Giải phương trình:
( 2017 - x)^3 + ( 2019 - x)^3 + (2x - 4036)^3 = 0
3)
a) Rút gọn biểu thức : A = 1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x+8
b) Tìm x,y biết : x^2 + y^2 + 1/x^2 + 1/y^2 = 4
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
tìm x biết 2x-1/x+2015-4023/x+2017=x-2014/2x-4036-x-2013/2x-4038 x thuộc n