Đặt 2017-x=a; 2019-x=b
\(\Leftrightarrow a+b=4036-2x\)
\(\Leftrightarrow-\left(a+b\right)=2x-4036\)
Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
\(\Leftrightarrow-3ab\left(a+b\right)=0\)
mà -3<0
nên \(ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy: S={2017;2018;2019}
Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)
Ta có: \(x+y+z=0\)
\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)
Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0
=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
Gải phương trình được x=2017; x=2019; x=2018
(2017−x)3+(2019−x)3+(2x−4036)3=0
(2017−x)3+(2019−x)3+(2x−4036)3=0
⇔(2017−x)3+(2019−x)3+(2x−4036)3=03⇔(2017−x)3+(2019−x)3+(2x−4036)3=03
⇒ 2017-x=0 ⇒ x= 2017
⇒ 2019-x=0 ⇒ x= 2019
⇒ 2x-4036=0 ⇒x= 2018
Vì x có 3 giá trị nên phương trình vô nghiệm.