Đặt \(2017-x=m,2019-x=n\)
\(\rightarrow m+n=2x-4036\)
Phương trình ban đầu trở thành :
\(m^3+n^3=\left(m+n\right)^3\)
\(\rightarrow3mn.\left(m+n\right)^3=0\)
\(\rightarrow\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x=2017\\x=2018\\x=2019\end{matrix}\right.\)
Vậy \(S=\left\{2017;2018;2019\right\}\)
(2017-X)3+(2019-X)3+(2X-4036)3=0
<=>(2017-x).(2018-x).(2019-x)=0
<=>x=2017
x=2018
x=2019
#YQ