Bài 1 : Tìm y
y x 5 + 5 = 50
y : 5 - 5 = 90
tìm y
y x 4 7/12=6 1/4
y : 3 7/8=5 1/2
6 1/7 : y =5 2/5
\(y.3\dfrac{7}{12}=6\dfrac{1}{4}\)
\(y.\dfrac{43}{12}=\dfrac{25}{4}\)
\(y=\dfrac{25}{4}:\dfrac{43}{12}\)
\(y=\dfrac{25.12}{4.43}\)
\(y=\dfrac{75}{43}\)
TÌM X
YYY +YY+ x + x + x + 1 = 1001
YY + x + 5 = 113
4725 + YYY + YY + x = 5463
YYY +YY+ x + x + x + 1 = 1001
3x= 1000-yyy-yy
x= (1000 - yyy - yy) :3
YY + x + 5 = 113
x= 133-5 - yy
x= 128-yy
4725 + YYY + YY + x = 5463
x= 5463- 4725 - yyy - yy
x= 738 - yyy - yy
bài 1:tìm x:
a, (28*5^x-5^x+2)*2=150
b, |x|-7=11
c, 16+|x-1|*2=22
d, 124+|26-x|*2=216
e, 18-4*|x-1|=-2
g, 90-3*(x+1)^2=42
h,2*(x-1)^2-3=5
bài 2:tìm x,y nguyên thỏa mãn:
a, x+5=y*(x-2)
b, 3*x*y -5y+2x=13
|x| - 7 = 11
<=> |x| = 18
<=> x = 18
hoặc x = -18
Vậy...
bài 1 : 101 x 125 + 101 x 25 - 101 x 50
bài 2 : 76 x 115 + 56 x 24 + 59 x 24
bài 3 : thực hiện phép tính : a ) 90-84+ 8 - 72 +66-60+54-48
b ) 99-97+95-93+91-89+.........+7-5+3-1
bài 4 : tìm số tự nhiên x biết :
a) \(x\) x 16 -\(x\) x 9 = 56
bài 5 :tìm số tự nhiên x , biết
a) \(x\) + 2 x \(x\) +3 x \(x\)+4 x \(x\) +5 x \(x\) = 165
b ) 1+2+3+4+.....+\(x\)=55
GIẢI GIÚP E Ạ
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
5:
a: =>15x=165
=>x=11
b: =>x(x+1)/2=55
=>x^2+x=110
=>x=10
4: =>7x=56
=>x=8
Bài 1:
101•125+101•25+101•50
= 101•(125+25-50)
=101•100
=10100
Bài 2:
76•115+56•24+59•24
= 76•115+24•(56+59)
= 76•115+24•115
= 115•(76+24)
= 115•100
= 11500
Bài 3 Tìm STN x
a) 2x-13=1
b) 55:(7+x)=53
c) a:x; 90:x; và x lớn nhất.
d) (2x-1)3=125
55.(7+x)=53
7+x=55:53
7+x=52
7+x=25
x=25-7
x=18
\(\left\{{}\begin{matrix}2x^2+30xy=5\left(x+5y\right)\sqrt{5xy}-50y^2\\2x^2+y^2=51\end{matrix}\right.\)
\(2x^2+30xy=5\left(x+5y\right)\sqrt{5xy}-50y^2\)\(\left(đk:x;y\ge0\right)\)
\(\Leftrightarrow2x^2+30xy-5\left(x+5y\right)\sqrt{5xy}+50y^2=0\left(1\right)\)
\(đặt:\sqrt{5xy}=b\ge0\Rightarrow5xy=b^2\Rightarrow10xy=2b^2\)
\(x+5y=a\ge0\Rightarrow x^2+10xy+25y^2=â^2\)
\(\Rightarrow2a^2=2x^2+20xy+50y^2\)
\(\Leftrightarrow\left(1\right)\Leftrightarrow2a^2+2b^2-5ab=0\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}b=2a\left(2\right)\\a=2b\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Rightarrow\sqrt{5xy}=2x+10y\Leftrightarrow4x^2+35xy+100y^2=0\left(4\right)\)
\(với:y=0\) \(ko\) \(là\) \(nghiệm\)
\(với:y\ne0\Rightarrow\left(4\right)\Leftrightarrow4\left(\dfrac{x}{y}\right)^2+35\left(\dfrac{x}{y}\right)+100=0\)\(\left(vô-lí\right)\)
\(do:4\left(\dfrac{x}{y}\right)^2+35\left(\dfrac{x}{y}\right)+100>0\)
\(\left(3\right)\Rightarrow x+5y=2\sqrt{5xy}\Leftrightarrow x^2+10xy+25y^2=20xy\Leftrightarrow x^2-10xy+25y^2=0\Leftrightarrow\left(x-5y\right)^2=0\Leftrightarrow x=5y\)
\(thay:x=5y\) \(vào:2x^2+y^2=51\Rightarrow2\left(5y\right)^2+y^2-51=0\Leftrightarrow51y^2-51=0\Leftrightarrow\left[{}\begin{matrix}y=1\left(tm\right)\Rightarrow x=5\left(tm\right)\\y=-1\left(loại\right)\end{matrix}\right.\)
bài 9: tìm x ( x + 9) + ( x - 8) + ( x + 7) + ( x - 6) + ( x + 5) + ( x - 4) + ( x + 3) = 90, 28
x + ( 9 - 8 + 7 - 6 + 5 - 4 + 3 ) = 90,28
x + 6 = 90,28
x = 90,28 - 6
x = 84,28
k cho mik ik :))
Giải các pt:
|x+5|=2-3x
|x+5|+|x+3|=3x-1
|x-1|=|3x-5|
|x-3|+|3x-5|=2
x+2/99+x+5>x+8/93+x+1/90
Giúp mình giải các bài trên nha. Cảm ơn nhiều nha.
Bài 1: Tìm STN a biết a chia 3 dư 2, a chia 5 dư 3, a chia 11 dư 6 ( a<500)
Bài 2: Tìm BC nhỏ hơn 1000 của 60, 85, 90
Bài 3: Tìm x thuộc N biết a chia 3 dư 2 a chia 4 dư 3 và achia 17 dư 9 ( a có 3 chữ số )
Bài 5: Cho A = 1+4 + 42 +43 + 44 +....+449+450
tìm dư của phép chia A dư 5
Bài6: Cho S =1+5+52+53+...+548+549
chứng minh : S chia hết cho 6
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$
Bài 3:
$a-2\vdots 3; a-3\vdots 4$
$\Rightarrow a+1\vdots 3$ và $a+1\vdots 4$
$\Rightarrow a+1=BC(3,4)$
$\Rightarrow a+1\vdots 12$
Lại có:
$a-9\vdots 17$ nên $a=17k+9$ với $k$ tự nhiên.
$a+1=17k+10\vdots 12$
$\Rightarrow 5k+10\vdots 12$
$\Rightarrow 5(k+2)\vdots 12$
$\Rightarrow k+2\vdots 12\Rightarrow k=12m-2$ với $m$ tự nhiên.
$\Rightarrow a=17k+9=17(12m-2)+9=204m-25$
$a$ có 3 chữ số
$\Rightarrow 100\leq a\leq 999$
$\Rightarrow 100\leq 204m-25\leq 999$
$\Rightarrow 0,61\leq m\leq 5,01$
$\Rightarrow m\in \left\{1; 2; 3;4; 5\right\}$
$\Rightarrow a\in \left\{179; 383; 587; 791; 995\right\}$