f(x)=x3-3x2+6x-8
g(x)=-6x2+x3-8 +12x
tìm x để f(x)-g(x)=0
F(x)=x3+4x2-5x+3
G(x)=x3+3x2-2x+1
a)chứng tỏ rằng x=0 không là nghiệm của F(x),G(x)
b)tính F(x)+G(x)
c)tính G(x)-G(x)
xog ok
câu 1: cho hai đa thức
F(x)=x3+4x2-5x+3
G(x)=x3+3x2-2x+1
a)chứng tỏ rằng x=0 không là nghiệm của F(x),G(x)
b)tính F(x)+G(x)
c)tính G(x)-G(x)
a: f(0)=0+0-0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0+1=1
=>x=0 ko là nghiệm của g(x)
b: f(x)+g(x)
=x^3+4x^2-5x+3+x^3+3x^2-2x+1
=2x^3+7x^2-7x+4
c: f(x)-g(x)
=x^3+4x^2-5x+3-x^3-3x^2+2x-1
=x^2-3x+2
Cho hai đa thức f(x)= x5 + x3 -4x- x5 +3x +7 và g(x)= 3x2-x3+8x-3x2-14. Tính f(x)+g(x) và tìm nghiệm của đa thức f(x)+g(x).
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
Cho hai đa thức
f ( x ) = x 3 - 3 x 2 + 2 x - 5 + x 2 , g ( x ) = - x 3 - 5 x + 3 x 2 + 3 x + 4 .
c. Tính nghiệm của f(x) + g(x)
c. Ta có f(x) + g(x)
=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1
Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1
Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)
Cho hai đa thức
f ( x ) = x 3 - 3 x 2 + 2 x - 5 + x 2 , g ( x ) = - x 3 - 5 x + 3 x 2 + 3 x + 4 .
b. Tính f(x) + 2g(x) và 2f(x) - g(x)
b. Ta có f(x) + 2g(x)
= x3 - 2x2 + 2x- 5 + 2(-x3 + 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + (-2x3) + 6x2 - 4x + 8
=-x3 + 4x2 - 2x + 3 (0.5 điểm)
2f(x) - g(x) = x3 - 2x2 + 2x- 5 - 2(-x3+ 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + 2x3 - 6x2 + 4x - 8
= 3x3 - 8x2 + 6x - 13 (0.5 điểm)
câu 1: cho hai đa thức
F(x)=x3+4x2-5x+3
G(x)=x3+3x2-2x+1
a)chứng tỏ rằng x=0 không là nghiệm của F(x),G(x)
b)tính F(x)+G(x)
c)tính G(x)-G(x)
mọi người giúp mik với ạ > mik cám ơn
Cho hàm số g ( x ) = x 2 + 1 và hàm số f ( x ) = x 3 - 3 x 2 + 1 . Tìm m để phương trình f ( g ( x ) ) - m = 0 có 4 nghiệm phân biệt.
A. - 3 < m < 1
B. - 3 < m ≤ 1
C. - 3 ≤ m ≤ - 1
D. m > - 1
câu hỏi : tìm x nguyên để đa thức f(x) chia hết cho đa thức g(x).
a,f(x) = 2x2-x+2 ; g(x) = x+1
b,f(x) = 3x2-4x+6 ; g(x) = 3x-1
c,f(x) = -2x3-7x2-5x+5 ; g(x) = x+2
d,f(x) = x3-3x2-4x+3 ; g(x) = x+1
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
a) x2(x-2)2-(x-2)^2 - x2 +1 b) x3-4x2+8x-8
c)1+6x-6x2-x3
d)x3-y3-3x2+3x-1
e)(x+y+z)^3-x3-y3-z3
Giải các phương trình sau:
a) x + 3 3 − x − 1 3 = 0 ;
b) x 4 + x 2 − 2 = 0 ;
c) x 3 + 3 x 2 + 6 x + 4 = 0 ;
d) x 3 − 6 x 2 + 8 x = 0 .
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}